ﻻ يوجد ملخص باللغة العربية
We investigate the enrichment patterns of several delivery scenarios of the volatiles to the atmospheres of ice giants, having in mind that the only well constrained determination made remotely, i.e. the carbon abundance measurement, suggests that their envelopes possess highly supersolar metallicities, i.e. close to two orders of magnitude above that of the protosolar nebula. In the framework of the core accretion model, only the delivery of volatiles in solid forms (amorphous ice, clathrates, pure condensates) to these planets can account for the apparent supersolar metallicity of their envelopes. In contrast, because of the inward drift of icy particles through various snowlines, all mechanisms invoking the delivery of volatiles in vapor forms predict subsolar abundances in the envelopes of Uranus and Neptune. Alternatively, even if the disk instability mechanism remains questionable in our solar system, it might be consistent with the supersolar metallicities observed in Uranus and Neptune, assuming the two planets suffered subsequent erosion of their H-He envelopes. The enrichment patterns derived for each delivery scenario considered should be useful to interpret future in situ measurements by atmospheric entry probes.
Uranus and Neptune are the last unexplored planets of the Solar System. I show that they hold crucial keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres. Their atmospheres are active and storms are believed
The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ~70% heavy elements surrounded by a m
Satellites of giant planets thought to form in gaseous circumplanetary disks (CPDs) during the late planet-formation phase, but it was unknown so far whether smaller mass planets, such as the ice giants could form such disks, thus moons there. We com
Uranus and Neptune form a distinct class of planets in our solar system. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more
Despite many similarities, there are significant observed differences between Uranus and Neptune: while Uranus is tilted and has a regular set of satellites, suggesting their accretion from a disk, Neptunes moons are irregular and are captured object