ﻻ يوجد ملخص باللغة العربية
Strong coupling between magnons and cavity photons was studied extensively for quantum electrodynamics in the past few years. Recently, the strong magnon-magnon coupling between adjacent layers in magnetic multilayers has been reported. However, the strongly coupled magnons confined in a single nanomagnet remains to be revealed. Here, we report the interaction between different magnon modes in a single magnonic cavity. The intermodel coupling between edge and center magnon modes in the strong coupling regime was approached with a maximum coupling strength of 0.494 GHz and cooperativity of 60.1 with a damping of 1X10-3. Furthermore, it is found that the coupling strength is highly dependent on the geometric parameters of the magnonic cavity. Our findings could greatly enrich the still evolving field of quantum magnonics.
Inspired by the recent achievements of the strong magnons- and spin textures-photons coupling via dipolar interaction, the coupling between magnons and the local resonances of spin textures through direct exchange interaction is expected but not real
We investigate the performance of niobium nitride superconducting coplanar waveguide resonators towards hybrid quantum devices with magnon-photon coupling. We find internal quality factors ~ 20000 at 20 mK base temperature, in zero magnetic field. We
The study of light-matter interaction has seen a resurgence in recent years, stimulated by highly controllable, precise, and modular experiments in cavity quantum electrodynamics (QED). The achievement of strong coupling, where the coupling between a
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questi
We demonstrate an all-fiber cavity QED system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity tra