ترغب بنشر مسار تعليمي؟ اضغط هنا

MemTorch: An Open-source Simulation Framework for Memristive Deep Learning Systems

341   0   0.0 ( 0 )
 نشر من قبل Corey Lammie
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Memristive devices have shown great promise to facilitate the acceleration and improve the power efficiency of Deep Learning (DL) systems. Crossbar architectures constructed using these Resistive Random-Access Memory (RRAM) devices can be used to efficiently implement various in-memory computing operations, such as Multiply Accumulate (MAC) and unrolled-convolutions, which are used extensively in Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). However, memristive devices face concerns of aging and non-idealities, which limit the accuracy, reliability, and robustness of Memristive Deep Learning Systems (MDLSs), that should be considered prior to circuit-level realization. This Original Software Publication (OSP) presents MemTorch, an open-source framework for customized large-scale memristive DL simulations, with a refined focus on the co-simulation of device non-idealities. MemTorch also facilitates co-modelling of key crossbar peripheral circuitry. MemTorch adopts a modernized soft-ware engineering methodology and integrates directly with the well-known PyTorch Machine Learning (ML) library



قيم البحث

اقرأ أيضاً

We present Simphony, a free and open-source software toolbox for abstracting and simulating photonic integrated circuits, implemented in Python. The toolbox is both fast and easily extensible; plugins can be written to provide compatibility with exis ting layout tools, and device libraries can be easily created without a deep knowledge of programming. We include several examples of photonic circuit simulations with novel features and demonstrate a speedup of more than 20x over a leading commercially available software tool.
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning ( OpenFL https://github.com/intel/openfl) is an open-source framework for training ML algorithms using the data-private collaborative learning paradigm of FL. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and deep learning frameworks. Here, we summarize the motivation and development characteristics of OpenFL, with the intention of facilitating its application to existing ML model training in a production environment. Finally, we describe the first use of the OpenFL framework to train consensus ML models in a consortium of international healthcare organizations, as well as how it facilitates the first computational competition on FL.
Developing automatic Math Word Problem (MWP) solvers has been an interest of NLP researchers since the 1960s. Over the last few years, there are a growing number of datasets and deep learning-based methods proposed for effectively solving MWPs. Howev er, most existing methods are benchmarked soly on one or two datasets, varying in different configurations, which leads to a lack of unified, standardized, fair, and comprehensive comparison between methods. This paper presents MWPToolkit, the first open-source framework for solving MWPs. In MWPToolkit, we decompose the procedure of existing MWP solvers into multiple core components and decouple their models into highly reusable modules. We also provide a hyper-parameter search function to boost the performance. In total, we implement and compare 17 MWP solvers on 4 widely-used single equation generation benchmarks and 2 multiple equations generation benchmarks. These features enable our MWPToolkit to be suitable for researchers to reproduce advanced baseline models and develop new MWP solvers quickly. Code and documents are available at https://github.com/LYH-YF/MWPToolkit.
We present an object-oriented open-source framework for solving the dynamics of open quantum systems written in Python. Arbitrary Hamiltonians, including time-dependent systems, may be built up from operators and states defined by a quantum object cl ass, and then passed on to a choice of master equation or Monte-Carlo solvers. We give an overview of the basic structure for the framework before detailing the numerical simulation of open system dynamics. Several examples are given to illustrate the build up to a complete calculation. Finally, we measure the performance of our library against that of current implementations. The framework described here is particularly well-suited to the fields of quantum optics, superconducting circuit devices, nanomechanics, and trapped ions, while also being ideal for use in classroom instruction.
The development of memristive device technologies has reached a level of maturity to enable the design of complex and large-scale hybrid memristive-CMOS neural processing systems. These systems offer promising solutions for implementing novel in-memo ry computing architectures for machine learning and data analysis problems. We argue that they are also ideal building blocks for the integration in neuromorphic electronic circuits suitable for ultra-low power brain-inspired sensory processing systems, therefore leading to the innovative solutions for always-on edge-computing and Internet-of-Things (IoT) applications. Here we present a recipe for creating such systems based on design strategies and computing principles inspired by those used in mammalian brains. We enumerate the specifications and properties of memristive devices required to support always-on learning in neuromorphic computing systems and to minimize their power consumption. Finally, we discuss in what cases such neuromorphic systems can complement conventional processing ones and highlight the importance of exploiting the physics of both the memristive devices and of the CMOS circuits interfaced to them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا