ﻻ يوجد ملخص باللغة العربية
Specialized accelerators for tensor-operations, such as blocked-matrix operations and multi-dimensional convolutions, have been emerged as powerful architecture choices for high-performance Deep-Learning computing. The rapid development of frameworks, models, and precision options challenges the adaptability of such tensor-accelerators since the adaptation to new requirements incurs significant engineering costs. Programmable tensor accelerators offer a promising alternative by allowing reconfiguration of a virtual architecture that overlays on top of the physical FPGA configurable fabric. We propose an overlay ({tau}-VTA) and an optimization method guided by agile-inspired auto-tuning techniques. We achieve higher performance and faster convergence than state-of-art.
Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, ma
We present Calyx, a new intermediate language (IL) for compiling high-level programs into hardware designs. Calyx combines a hardware-like structural language with a software-like control flow representation with loops and conditionals. This split re
Many hardware vendors have introduced specialized deep neural networks (DNN) accelerators owing to their superior performance and efficiency. As such, how to generate and optimize the code for the hardware accelerator becomes an important yet less ex
The difficulty of deploying various deep learning (DL) models on diverse DL hardware has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow
There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms --