ترغب بنشر مسار تعليمي؟ اضغط هنا

A time-dependent harmonic oscillator with two frequency jumps: an exact algebraic solution

217   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a harmonic oscillator (HO) with a time dependent frequency which undergoes two successive abrupt changes. By assumption, the HO starts in its fundamental state with frequency omega_{0}, then, at t = 0, its frequency suddenly increases to omega_{1} and, after a finite time interval tau, it comes back to its original value omega_{0}. Contrary to what one could naively think, this problem is a quite non-trivial one. Using algebraic methods we obtain its exact analytical solution and show that at any time t > 0 the HO is in a squeezed state. We compute explicitly the corresponding squeezing parameter (SP) relative to the initial state at an arbitrary instant and show that, surprisingly, it exhibits oscillations after the first frequency jump (from omega_{0} to omega_{1}), remaining constant after the second jump (from omega_{1} back to omega_{0}). We also compute the time evolution of the variance of a quadrature. Last, but not least, we calculate the vacuum (fundamental state) persistence probability amplitude of the HO, as well as its transition probability amplitude for any excited state.



قيم البحث

اقرأ أيضاً

Using operator ordering techniques based on BCH-like relations of the su(1,1) Lie algebra and a time-splitting approach,we present an alternative method of solving the dynamics of a time-dependent quantum harmonic oscillator for any initial state. We find an iterative analytical solution given by simple recurrence relations that are very well suited for numerical calculations. We use our solution to reproduce and analyse some results from literature in order to prove the usefulness of the method and, based on these references, we discuss efficiency in squeezing, when comparing the parametric resonance modulation and the Janszky-Adam scheme.
Using Schwinger Variational Principle we solve the problem of quantum harmonic oscillator with time dependent frequency. Here, we do not take the usual approach which implicitly assumes an adiabatic behavior for the frequency. Instead, we propose a n ew solution where the frequency only needs continuity in its first derivative or to have a finite set of removable discontinuities.
234 - K. Gemba , Z. T. Hlousek , Z. Papp 2007
In quantum mechanics with minimal length uncertainty relations the Heisenberg-Weyl algebra of the one-dimensional harmonic oscillator is a deformed SU(1,1) algebra. The eigenvalues and eigenstates are constructed algebraically and they form the infin ite-dimensional representation of the deformed SU(1,1) algebra. Our construction is independent of prior knowledge of the exact solution of the Schrodinger equation of the model. The approach can be generalized to the $D$-dimensional oscillator with non-commuting coordinates.
We show how a single trapped ion may be used to test a variety of important physical models realized as time-dependent harmonic oscillators. The ion itself functions as its own motional detector through laser-induced electronic transitions. Alsing et al. [Phys. Rev. Lett. 94, 220401 (2005)] proposed that an exponentially decaying trap frequency could be used to simulate (thermal) Gibbons-Hawking radiation in an expanding universe, but the Hamiltonian used was incorrect. We apply our general solution to this experimental proposal, correcting the result for a single ion and showing that while the actual spectrum is different from the Gibbons-Hawking case, it nevertheless shares an important experimental signature with this result.
64 - DaeKil Park 2018
The dynamics of mixedness and entanglement is examined by solving the time-dependent Schr{o}dinger equation for three coupled harmonic oscillator system with arbitrary time-dependent frequency and coupling constants parameters. We assume that part of oscillators is inaccessible and remaining oscillators accessible. We compute the dynamics of entanglement between inaccessible and accessible oscillators. In order to show the dynamics pictorially we introduce three quenched models. In the quenched models both mixedness and entanglement exhibit oscillatory behavior in time with multi-frequencies. It is shown that the mixedness for the case of one inaccessible oscillator is larger than that for the case of two inaccessible oscillators in the most time interval. Contrary to the mixedness entanglement for the case of one inaccessible oscillator is smaller than that for the case of two inaccessible oscillators in the most time interval.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا