ﻻ يوجد ملخص باللغة العربية
We investigate, within the framework of linear elasticity theory, edge Rayleigh waves of a two-dimensional elastic solid with broken time-reversal and parity symmetries due to a Berry term. As our prime example, we study the elastic edge wave traveling along the boundary of a two-dimensional skyrmion lattice hosted inside a thin-film chiral magnet. We find that the direction of propagation of the Rayleigh modes is determined not only by the chirality of the thin-film, but also by the Poisson ratio of the crystal. We discover three qualitatively different regions distinguished by the chirality of the low-frequency edge waves, and study their properties. To illustrate the Rayleigh edge waves in real time, we have carried out finite-difference simulations of the model. Apart from skyrmion crystals, our results are also applicable to edge waves of gyroelastic media and screened Wigner crystals in magnetic fields. Our work opens a pathway towards controlled manipulation of elastic signals along boundaries of crystals with broken time-reversal symmetry.
A magnetic skyrmion is a topological object that can exist as a solitary embedded in the vast ferromagnetic phase, or coexists with a group of its siblings in various stripy phases as well as skyrmion crystals (SkXs). Isolated skyrmions and skyrmions
The successful isolation of graphene ten years ago has evoked a rapidly growing scientific interest in the nature of two-dimensional (2D) crystals. A number of different 2D crystals has been produced since then, with properties ranging from supercond
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landa
Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micron-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report
Antiferromagnetic skyrmion crystals are magnetic phases predicted to exist in antiferromagnets with Dzyaloshinskii-Moriya interactions. Their spatially periodic noncollinear magnetic texture gives rise to topological bulk magnon bands characterized b