ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoherence measurements in crystals of molecular magnets

64   0   0.0 ( 0 )
 نشر من قبل Gheorghe Taran
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Decoherence processes in crystals of molecular magnets are prototypical for interacting electronic spin systems. We analyze the Landau-Zener dynamics of the archetypical TbPc$_2$ complex diluted in a diamagnetic monocrystal. The dependence of the tunneling probability on the field sweep rate is evaluated in the framework of the recently proposed master equation in which the decoherence processes are described through a phenomenological Lindblad operator. Thus, we showcase low temperature magnetic measurements that complement resonant techniques in determining small tunnel splittings and dephasing times.



قيم البحث

اقرأ أيضاً

Experimentally detected ultrafast spin-avalanches spreading in crystals of molecular (nano)magnets (Decelle et al., Phys. Rev. Lett. 102, 027203 (2009)), have been recently explained in terms of magnetic detonation (Modestov et al., Phys. Rev. Lett. 107, 207208 (2011)). Here magnetic detonation structure is investigated by taking into account transport processes of the crystals such as thermal conduction and volume viscosity. In contrast to the previously suggested model, the transport processes result in smooth profiles of the most important thermodynamical crystal parameters - such as temperature, density and pressure - all over the magnetic detonation front including the leading shock, which is one of the key regions of magnetic detonation. In the case of zero volume viscosity, thermal conduction leads to an isothermal discontinuity instead of the shock, for which temperature is continuous while density and pressure experience jump.
128 - Myriam P. Sarachik 2013
The reversal of the magnetization of crystals of molecular magnets that have a large spin and high anisotropy barrier generally proceeds below the blocking temperature by quantum tunneling. This is manifested as a series of controlled steps in the hy steresis loops at resonant values of the magnetic field where energy levels on opposite sides of the barrier cross. An abrupt reversal of the magnetic moment of the entire crystal can occur instead by a process commonly referred to as a magnetic avalanche, where the molecular spins reverse along a deflagration front that travels through the sample at subsonic speed. In this chapter, we review experimental results obtained to date for magnetic deflagration in molecular nanomagnets.
It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect. In particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of the Schrodingers equation.
The nuclear spin-mediated quantum relaxation of ensembles of tunneling magnetic molecules causes a hole to appear in the distribution of internal fields in the system. The form of this hole, and its time evolution, are studied using Monte Carlo simul ations. It is shown that the line-shape of the tunneling hole in a weakly polarised sample must have a Lorentzian lineshape- the short-time half-width $xi_o$ in all experiments done so far should be $sim E_0$, the half-width of the nuclear spin multiplet. After a time $tau_o$, the single molecule tunneling relaxation time, the hole width begins to increase rapidly. In initially polarised samples the disintegration of resonant tunneling surfaces is found to be very fast.
The spatial profile of the magnetization of Mn12 crystals in a swept magnetic field applied along the easy axis is determined from measurements of the local magnetic induction along the sample surface using an array of Hall sensors. We find that the magnetization is not uniform inside the sample, but rather shows some spatial oscillations which become more prominent around the resonance field values. Moreover, it appears that different regions of the sample are at resonance at different values of the applied field and that the sweep rate of the internal magnetic induction is spatially non-uniform. We present a model which describes the evolution of the non-uniformities as a function of the applied field. Finally we show that the degree of non-uniformity can be manipulated by sweeping the magnetic field back and forth through part of the resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا