ﻻ يوجد ملخص باللغة العربية
Inspired by recent successes with parallel optimization techniques for solving Boolean satisfiability, we investigate a set of strategies and heuristics that aim to leverage parallel computing to improve the scalability of neural network verification. We introduce an algorithm based on partitioning the verification problem in an iterative manner and explore two partitioning strategies, that work by partitioning the input space or by case splitting on the phases of the neuron activations, respectively. We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems. An extensive experimental evaluation shows the benefit of these techniques on both existing benchmarks and new benchmarks from the aviation domain. A preliminary experiment with ultra-scaling our algorithm using a large distributed cloud-based platform also shows promising results.
Understanding properties of deep neural networks is an important challenge in deep learning. In this paper, we take a step in this direction by proposing a rigorous way of verifying properties of a popular class of neural networks, Binarized Neural N
Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify
Parameters of recent neural networks require a huge amount of memory. These parameters are used by neural networks to perform machine learning tasks when processing inputs. To speed up inference, we develop Partition Pruning, an innovative scheme to
HyperLTL is an extension of linear-time temporal logic for the specification of hyperproperties, i.e., temporal properties that relate multiple computation traces. HyperLTL can express information flow policies as well as properties like symmetry in
Implementations of artificial neural networks (ANNs) might lead to failures, which are hardly predicted in the design phase since ANNs are highly parallel and their parameters are barely interpretable. Here, we develop and evaluate a novel symbolic v