ترغب بنشر مسار تعليمي؟ اضغط هنا

Audiovisual Speech-In-Noise (SIN) Performance of Young Adults with ADHD

59   0   0.0 ( 0 )
 نشر من قبل Gavindya Jayawardena
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Adolescents with Attention-deficit/hyperactivity disorder (ADHD) have difficulty processing speech with background noise due to reduced inhibitory control and working memory capacity (WMC). This paper presents a pilot study of an audiovisual Speech-In-Noise (SIN) task for young adults with ADHD compared to age-matched controls using eye-tracking measures. The audiovisual SIN task consists of varying six levels of background babble, accompanied by visual cues. A significant difference between ADHD and neurotypical (NT) groups was observed at 15 dB signal-to-noise ratio (SNR). These results contribute to the literature of young adults with ADHD.



قيم البحث

اقرأ أيضاً

Attention-deficit/hyperactivity disorder (ADHD) is increasingly being diagnosed in adults, but the neural mechanisms underlying its distinct clinical symptoms (hyperactivity and inattention) remain poorly understood. Here, we used a nested-spectral p artition approach to study resting-state brain networks for ADHD patients and healthy adults and adopted hierarchical segregation and integration to predict clinical symptoms. Adult ADHD is typically characterized by an overintegrated interaction within default mode network. Limbic system is dominantly affected by ADHD and has an earlier aging functional pattern, but salient attention system is preferably affected by age and shows an opposite aging trajectory. More importantly, these two systems selectively and robustly predict distinct ADHD symptoms. Earlier-aging limbic system prefers to predict hyperactivity, and age-affected salient attention system better predicts inattention. Our findings provide a more comprehensive and deeper understanding of the neural basis of distinct ADHD symptoms and could contribute to the development of more objective clinical diagnoses.
Noise is an inherent part of neuronal dynamics, and thus of the brain. It can be observed in neuronal activity at different spatiotemporal scales, including in neuronal membrane potentials, local field potentials, electroencephalography, and magnetoe ncephalography. A central research topic in contemporary neuroscience is to elucidate the functional role of noise in neuronal information processing. Experimental studies have shown that a suitable level of noise may enhance the detection of weak neuronal signals by means of stochastic resonance. In response, theoretical research, based on the theory of stochastic processes, nonlinear dynamics, and statistical physics, has made great strides in elucidating the mechanism and the many benefits of stochastic resonance in neuronal systems. In this perspective, we review recent research dedicated to neuronal stochastic resonance in biophysical mathematical models. We also explore the regulation of neuronal stochastic resonance, and we outline important open questions and directions for future research. A deeper understanding of neuronal stochastic resonance may afford us new insights into the highly impressive information processing in the brain.
Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.
198 - Tilo Schwalger 2021
Noise in spiking neurons is commonly modeled by a noisy input current or by generating output spikes stochastically with a voltage-dependent hazard rate (escape noise). While input noise lends itself to modeling biophysical noise processes, the pheno menological escape noise is mathematically more tractable. Using the level-crossing theory for differentiable Gaussian processes, we derive an approximate mapping between colored input noise and escape noise in leaky integrate-and-fire neurons. This mapping requires the first-passage-time (FPT) density of an overdamped Brownian particle driven by colored noise with respect to an arbitrarily moving boundary. Starting from the Wiener-Rice series for the FPT density, we apply the second-order decoupling approximation of Stratonovich to the case of moving boundaries and derive a simplified hazard-rate representation that is local in time and numerically efficient. This simplification requires the calculation of the non-stationary auto-correlation function of the level-crossing process: For exponentially correlated input noise (Ornstein-Uhlenbeck process), we obtain an exact formula for the zero-lag auto-correlation as a function of noise parameters, mean membrane potential and its speed, as well as an exponential approximation of the full auto-correlation function. The theory well predicts the FPT and interspike interval densities as well as the population activities obtained from simulations with time-dependent stimulus or boundary. The agreement with simulations is strongly enhanced compared to a first-order decoupling approximation that neglects correlations between level crossings. The second-order approximation also improves upon a previously proposed theory in the subthreshold regime. Depending on a simplicity-accuracy trade-off, all considered approximations represent useful mappings from colored input noise to escape noise.
126 - Ingmar Steiner 2012
We present a modular framework for articulatory animation synthesis using speech motion capture data obtained with electromagnetic articulography (EMA). Adapting a skeletal animation approach, the articulatory motion data is applied to a three-dimens ional (3D) model of the vocal tract, creating a portable resource that can be integrated in an audiovisual (AV) speech synthesis platform to provide realistic animation of the tongue and teeth for a virtual character. The framework also provides an interface to articulatory animation synthesis, as well as an example application to illustrate its use with a 3D game engine. We rely on cross-platform, open-source software and open standards to provide a lightweight, accessible, and portable workflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا