ﻻ يوجد ملخص باللغة العربية
A SrRuO$_3$ (SRO) thin film and its heterostructure have brought much attention because of the recently demonstrated fascinating properties, such as topological Hall effect and skyrmions. Critical to the understanding of those SRO properties is the study of the spin configuration. Here, we conduct resonant soft x-ray scattering (RSXS) at oxygen K-edge to investigate the spin configuration of a 4 unit-cell SRO film that was grown epitaxially on a single crystal SrTiO$_3$. The RSXS signal under a magnetic field (~0.4 Tesla) clearly shows a magnetic dichroism pattern around the specular reflection. Model calculations on the RSXS signal demonstrate that the magnetic dichroism pattern originates from a Neel-type chiral spin structure in this SRO thin film. We believe that the observed spin structure of the SRO system is a critical piece of information for understanding its intriguing magnetic and transport properties.
We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO$_3$ that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO$_3$ films remain metallic even for a thickness of 2 unit cells (u
SrRuO$_3$, a ferromagnet with an approximately 160,K Curie temperature, exhibits a $T^2$ dependent dc resistivity below $approx$ 30 K. Nevertheless, previous optical studies in the infrared and terahertz range show non-Drude dynamics at low temperatu
Ferromagnetism and exotic topological structures in SrRuO$_3$ (SRO) induce sign-changing anomalous Hall effect (AHE). Recently, hump structures have been reported in the Hall resistivity of SRO thin films, especially in the ultra-thin regime. We inve
We present a comprehensive study of the crystal structure of the thin-film, ferromagnetic topological insulator (Bi, Sb)$_{2-x}$V$_x$Te$_3$. The dissipationless quantum anomalous Hall edge states it manifests are of particular interest for spintronic
Motivated by the recently observed topological Hall effect in ultra-thin films of SrRuO$_3$ (SRO) grown on SrTiO$_3$ (STO) [001] substrate, we investigate the magnetic ground state and anomalous Hall response of the SRO ultra-thin films by virtue of