ﻻ يوجد ملخص باللغة العربية
We rediscuss the main Cosmological Problems as illusions originated from our ignorance of the hidden information holographically stored in {it vacuo}. The Cosmological vacuum state is full of a large number of dynamical quantum hairs, dubbed {it hairons}, which dominate the Cosmological Entropy. We elaborate on the Cosmological Constant (CC) problem, in both the dynamical and time-constant possibilities. We show that all dangerous quantum mixings between the CC and the Planck energy scales are exponentially suppressed as an entropic collective effect of the hairon environment. As a consequence, the dark energy scale is UV insensitive to any planckian corrections. On the other hand, the inflation scale is similarly stabilized from any radiative effects. In the case of the Dark energy, we show the presence of a holographic entropic attractor, favoring a time variation of $Lambdarightarrow 0$ in future rather than a static CC case; i.e. $w>-1$ Dynamical DE is favored over a CC or a $w<-1$ phantom cosmology. In both the inflation and dark energy sectors, we elaborate on the Trans-Planckian problem, in relation with the recently proposed Trans-Planckian Censorship Conjecture (TCC). We show that the probability for any sub-planckian wavelength modes to survive after inflation is completely negligible as a holographic wash-out mechanism. In other words, the hairons provide for a holographic decoherence of the transplanckian modes in a holographic scrambling time. This avoids the TCC strong bounds on the Inflaton and DE potentials.
In a spacetime divided into two regions $U_1$ and $U_2$ by a hypersurface $Sigma$, a perturbation of the field in $U_1$ is coupled to perturbations in $U_2$ by means of the holographic imprint that it leaves on $Sigma$. The linearized gluing field eq
We review an information-theoretic approach to quantum cosmology, summarising the key results obtained to date, including a suggestion that an accelerating universe will eventually turn around.
In this article we have studied a closed universe which a holographic energy on the brane whose energy density is described by $rho (H) =3c^{2}H^{2}$ and we obtain an equation for the Hubble parameter, this equation gave us different physical behavio
We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvat
We propose a cosmological scenario which describes the evolution history of the universe based on the particle creation and holographic equipartition. The model attempts to solve the inflation of the early universe and the accelerated expansion of th