ﻻ يوجد ملخص باللغة العربية
We give an overview of recent progress into the infrared structure of QCD based on the gauge/gravity correspondence and light-front quantization, where the color confining interaction for mesons and baryons is determined by an underlying superconformal algebraic structure. This new approach to hadron physics gives remarkable connections and predictions across the entire mass spectrum of hadrons and also describes the infrared behavior of the strong coupling. More recently, an extensive study of form factors, polarized and unpolarized parton distributions and the sea quark contribution to the nucleon has been carried out by extending the holographic formalism to incorporate the nonperturbative structure of Veneziano amplitudes. Contribution to the report Strong QCD from Hadron Structure Experiments Jefferson Lab Workshop, 5-9 November, 2019
QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and gluonic fields, not squarks nor gluinos. However, its hadronic eigensolutions conform to a representation of superconformal algebra, reflecting the under
The QCD light-front Hamitonian equation derived from quantization at fixed LF time provides a causal, frame-independent, method for computing hadron spectroscopy and dynamical observables. de Alfaro, Fubini, and Furlan (dAFF) have made an important o
Light-Front Quantization -- Diracs Front Form -- provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined f
The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD. Light-front holography allows hadronic amplitudes in the AdS fifth dim
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD