ﻻ يوجد ملخص باللغة العربية
This work combines the principles of the heat spreader method and imaging capability of the thermoreflectance measurements to measure the in-plane thermal conductivity of thin-films without the requirement of film suspension or multiple thermometer deposition. We refer to this hybrid technique as heat diffusion imaging. The thermoreflectance imaging system provides a temperature distribution map across the film surface. The in-plane thermal conductivity can be extracted from the temperature decay profile. By coupling the system with a cryostat, we were able to conduct measurements from 40 K to 400 K. Silicon thin film samples with and without periodic holes were measured and compared with in-plane time-domain thermoreflectance (TDTR) measurement and literature data as validation for heat diffusion imaging.
As wide bandgap electronic devices have continued to advance in both size reduction and power handling capabilities, heat dissipation has become a significant concern. To mitigate this, chemical vapor deposited (CVD) diamond has been demonstrated as
A numerical modeling study based on 3D finite element method (FEM) simulation and 1D analytical solutions has been carried out to evaluate the capabilities of two ac methods for measuring in-plane thermal conductivity of thin film deposited on the ba
Various unusual behaviors of artificial materials are governed by their topological properties, among which the edge state at the boundary of a photonic or phononic lattice has been captivated as a popular notion. However, this remarkable bulk-bounda
A normal-diffusion theory for heat transfer in many-body systems via carriers of thermal photons is developed. The thermal conductivity tensor is rigorously derived from fluctuational electrodynamics as a coefficient of diffusion term for the first t
The coherent manipulation of acoustic waves on the nanoscale usually requires multilayers with thicknesses and interface roughness defined down to the atomic monolayer. This results in expensive devices with predetermined functionality. Nanoscale mes