ﻻ يوجد ملخص باللغة العربية
We study whether binary black hole template banks can be used to search for the gravitational waves emitted by general binary coalescences. To recover binary signals from noisy data, matched-filtering techniques are typically required. This is especially true for low-mass systems, with total mass $M lesssim 10 , M_odot$, which can inspiral in the LIGO and Virgo frequency bands for thousands of cycles. In this paper, we focus on the detectability of low-mass binary systems whose individual components can have large spin-induced quadrupole moments and small compactness. The quadrupole contributes to the phase evolution of the waveform whereas the compactness affects the merger frequency of the binary. We find that binary black hole templates (with dimensionless quadrupole $kappa=1$) cannot be reliably used to search for objects with large quadrupoles ($kappagtrsim 20$) over a wide range of parameter space. This is especially true if the general object is highly spinning and has a larger mass than its binary companion. A binary that consists of objects with small compactness could merge in the LIGO and Virgo frequency bands, thereby reducing its accumulated signal-to-noise ratio during the inspiraling regime. Template banks which include these more general waveforms must therefore be constructed. These extended banks would allow us to realistically search for the existence of new astrophysical and beyond the Standard Model compact objects.
We describe the current status of the search for gravitational waves from inspiralling compact binary systems in LIGO data. We review the result from the first scientific run of LIGO (S1). We present the goals of the search of data taken in the secon
The Fermi collaboration identified a possible electromagnetic counterpart of the gravitational wave event of September 14, 2015. Our goal is to provide an unsupervised data analysis algorithm to identify similar events in Fermis Gamma-ray Burst Monit
We introduce a new technique to search for gravitational wave events from compact binary mergers that produce a clear signal only in a single gravitational wave detector, and marginal signals in other detectors. Such a situation can arise when the de
We propose a new method to detect gravitational waves, based on spatial coherence interferometry with stellar light, as opposed to the conventional temporal coherence interferometry with laser sources. The proposed method detects gravitational waves
We study the feasibility of detecting exotic cores in merging neutron stars with ground-based gravitational-wave detectors. We focus on models with a sharp nuclear/exotic matter interface, and assume a uniform distribution of neutron stars in the mas