Dimensional scaffolding of electromagnetism using geometric algebra


الملخص بالإنكليزية

Using geometric algebra and calculus to express the laws of electromagnetism we are able to present magnitudes and relations in a gradual way, escalating the number of dimensions. In the one-dimensional case, charge and current densities, the electric field E and the scalar and vector potentials get a geometric interpretation in spacetime diagrams. The geometric vector derivative applied to these magnitudes yields simple expressions leading to concepts like displacement current, continuity and gauge or retarded time, with a clear geometric meaning. As the geometric vector derivative is invertible, we introduce simple Greens functions and, with this, it is possible to obtain retarded Lienard-Wiechert potentials propagating naturally at the speed of light. In two dimensions, these magnitudes become more complex, and a magnetic field B appears as a pseudoscalar which was absent in the one-dimensional world. The laws of induction reflect the relations between E and B, and it is possible to arrive to the concepts of capacitor, electric circuit and Poynting vector, explaining the flow of energy. The solutions to the wave equations in this two-dimensional scenario uncover now the propagation of physical effects at the speed of light. This anticipates the same results in the real three-dimensional world, but endowed in this case with a nature which is totally absent in one or three dimensions. Electromagnetic waves propagating entirely at the speed of light can thus be viewed as a consequence of living in a world with an odd number of spatial dimensions. Finally, in the real three-dimensional world the same set of simple multivector differential expressions encode the fundamental laws and concepts of electromagnetism.

تحميل البحث