ﻻ يوجد ملخص باللغة العربية
In this paper, we compute the effective action of both a scalar field and a Dirac spinor field in the global de Sitter space of any dimension $d$ using the in-/out-state formalism. We show that there is particle production in even dimensions for both scalar field and spinor field. The in-out vacuum amplitude $Z_{in/out}$ is divergent at late times. By using dimensional regularization, we extract the finite part of $log Z_{in/out}$ for $d$ even and the logarithmically divergent part of $log Z_{in/out}$ for $d$ odd. We also find that the regularized in-out vacuum amplitude equals the ratio of determinants associated with different quantizations in $AdS_d$ upon the identification of certain parameters in the two theories.
Calculating the quantum evolution of a de Sitter universe on superhorizon scales is notoriously difficult. To address this challenge, we introduce the Soft de Sitter Effective Theory (SdSET). This framework holds for superhorizon modes whose comoving
We consider massless fields of arbitrary spin in de Sitter space. We introduce a spinor-helicity formalism, which encodes the field data on a cosmological horizon. These variables reduce the free S-matrix in an observers causal patch, i.e. the evolut
We construct five dimensional black rings in global anti-de Sitter space using numerical methods. These rings satisfy the BPS bound $| J | < M ell$, but the angular velocity always violates the Hawking-Reall bound $| Omega_H ell | leq 1$, indicating
$CPT$ groups for spinor fields in de Sitter and anti-de Sitter spaces are defined in the framework of automorphism groups of Clifford algebras. It is shown that de Sitter spaces with mutually opposite signatures correspond to Clifford algebras with d
We have studied the induced one-loop energy-momentum tensor of a massive complex scalar field within the framework of nonperturbative quantum electrodynamics (QED) with a uniform electric field background on the Poincare patch of the two-dimensional