Correlated equilibria and mean field games: a simple model


الملخص بالإنكليزية

In the context of simple finite-state discrete time systems, we introduce a generalization of mean field game solution, called correlated solution, which can be seen as the mean field game analogue of a correlated equilibrium. Our notion of solution is justified in two ways: We prove that correlated solutions arise as limits of exchangeable correlated equilibria in restricted (Markov open-loop) strategies for the underlying $N$-player games, and we show how to construct approximate $N$-player correlated equilibria starting from a correlated solution to the mean field game.

تحميل البحث