ﻻ يوجد ملخص باللغة العربية
Scholars frequently employ relatedness measures to estimate the similarity between two different items (e.g., documents, authors, and institutes). Such relatedness measures are commonly based on overlapping references ($textit{i.e.}$, bibliographic coupling) or citations ($textit{i.e.}$, co-citation) and can then be used with cluster analysis to find boundaries between research fields. Unfortunately, calculating a relatedness measure is challenging, especially for a large number of items, because the computational complexity is greater than linear. We propose an alternative method for identifying the research front that uses direct citation inspired by relatedness measures. Our novel approach simply replicates a node into two distinct nodes: a citing node and cited node. We then apply typical clustering methods to the modified network. Clusters of citing nodes should emulate those from the bibliographic coupling relatedness network, while clusters of cited nodes should act like those from the co-citation relatedness network. In validation tests, our proposed method demonstrated high levels of similarity with conventional relatedness-based methods. We also found that the clustering results of proposed method outperformed those of conventional relatedness-based measures regarding similarity with natural language processing--based classification.
The rapid development of modern science and technology has spawned rich scientific topics to research and endless production of literature in them. Just like X-ray imaging in medicine, can we intuitively identify the development limit and internal ev
The goal of our research is to understand how ideas propagate, combine and are created in large social networks. In this work, we look at a sample of relevant scientific publications in the area of high-frequency analog circuit design and their citat
The Geant4 reference paper published in Nuclear Instruments and Methods A in 2003 has become the most cited publication in the whole Nuclear Science and Technology category of Thomson-Reuters Journal Citation Reports. It is currently the second most
Several studies exist which use scientific literature for comparing scientific activities (e.g., productivity, and collaboration). In this study, using co-authorship data over the last 40 years, we present the evolutionary dynamics of multi level (i.
Research grants have played an important role in seeding and promoting fundamental research projects worldwide. There is a growing demand for developing and delivering scientific influence analysis as a service on research grant repositories. Such an