ﻻ يوجد ملخص باللغة العربية
We devise a protocol to build 1D time-dependent quantum walks in 1D maximizing the spatial spread throughout the procedure. We allow only one of the physical parameters of the coin-tossing operator to vary, i.e. the angle $theta$, such that for $theta=0$ we have the $hatsigma_z$, while for $theta=pi/4$ we obtain the Hadamard gate. The optimal $theta$ sequences present non-trivial patterns, with mostly $thetaapprox 0$ alternated with $thetaapprox pi/4$ values after increasingly long periods. We provide an analysis of the entanglement properties, quasi-energy spectrum and survival probability, providing a full physical picture.
We study the quantum walk search algorithm of Shenvi, Kempe and Whaley [PRA 67 052307 (2003)] on data structures of one to two spatial dimensions, on which the algorithm is thought to be less efficient than in three or more spatial dimensions. Our ai
The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk, which allows for incoherent movement of th
Numerical methods for the 1-D Dirac equation based on operator splitting and on the quantum lattice Boltzmann (QLB) schemes are reviewed. It is shown that these discretizations fall within the class of quantum walks, i.e. discrete maps for complex fi
The main results on quantum walk search are scattered over different, incomparable frameworks, most notably the hitting time framework, originally by Szegedy, the electric network framework by Belovs, and the MNRS framework by Magniez, Nayak, Roland
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern. We employ Quantum Fisher Information, as a figure of merit, to quantify extractable information about an unknown parameter encoded with