ﻻ يوجد ملخص باللغة العربية
As Knowledge Graphs (KGs) continue to gain widespread momentum for use in different domains, storing the relevant KG content and efficiently executing queries over them are becoming increasingly important. A range of Data Management Systems (DMSs) have been employed to process KGs. This paper aims to provide an in-depth analysis of query performance across diverse DMSs and KG query types. Our aim is to provide a fine-grained, comparative analysis of four major DMS types, namely, row-, column-, graph-, and document-stores, against major query types, namely, subject-subject, subject-object, tree-like, and optional joins. In particular, we analyzed the performance of row-store Virtuoso, column-store Virtuoso, Blazegraph (i.e., graph-store), and MongoDB (i.e., document-store) using five well-known benchmarks, namely, BSBM, WatDiv, FishMark, BowlognaBench, and BioBench-Allie. Our results show that no single DMS displays superior query performance across the four query types. In particular, row- and column-store Virtuoso are a factor of 3-8 faster for tree-like joins, Blazegraph performs around one order of magnitude faster for subject-object joins, and MongoDB performs over one order of magnitude faster for high-selective queries.
Arising user-centric graph applications such as route planning and personalized social network analysis have initiated a shift of paradigms in modern graph processing systems towards multi-query analysis, i.e., processing multiple graph queries in pa
There is a large body of recent work applying machine learning (ML) techniques to query optimization and query performance prediction in relational database management systems (RDBMSs). However, these works typically ignore the effect of textit{intra
EQL, also named as Extremely Simple Query Language, can be widely used in the field of knowledge graph, precise search, strong artificial intelligence, database, smart speaker ,patent search and other fields. EQL adopt the principle of minimalism in
Reasoning is a fundamental capability for harnessing valuable insight, knowledge and patterns from knowledge graphs. Existing work has primarily been focusing on point-wise reasoning, including search, link predication, entity prediction, subgraph ma
Databases employ indexes to filter out irrelevant records, which reduces scan overhead and speeds up query execution. However, this optimization is only available to queries that filter on the indexed attribute. To extend these speedups to queries on