ﻻ يوجد ملخص باللغة العربية
We revisit the N=6 superconformal Chern-Simons-matter theories and their supergravity duals in the context of generalized symmetries. This allows us to finally clarify how the $SU(N)times SU(N)$ and $(SU(N)times SU(N))/mathbb{Z}_N$ theories, as well as other quotient theories that have recently been discussed, fit into the holographic framework. It also resolves a long standing puzzle regarding the di-baryon operator in the $U(N)times U(N)$ theory.
We study reductions of 6d theories on a $d$-dimensional manifold $M_d$, focusing on the interplay between symmetries, anomalies, and dynamics of the resulting $(6-d)$-dimensional theory $T[M_d]$. We refine and generalize the notion of polarization to
We analyse the symmetries of a class of A-type little string theories that are engineered by $N$ parallel M5-branes with M2-branes stretched between them. This paper deals with the so-called reduced free energy, which only receives contributions from
We study confinement in 4d $mathcal{N}=1$ $SU(N)$ Super-Yang Mills (SYM) from a holographic point of view, focusing on the 1-form symmetry and its relation to chiral symmetry breaking. In the 5d supergravity dual, obtained by truncation of the Kleban
We study the recently proposed AdS$_7$/CFT$_6$ dualities for a class of 6d $mathcal{N} = (1,0)$ theories that flow on the tensor branch to long linear quiver gauge theories. We find a precise agreement in the symmetries and in the spectrum of charged
The aim of these Lectures is to provide a brief overview of the subject of asymptotic symmetries of gauge and gravity theories in asymptotically flat spacetimes as background material for celestial holography.