TIE: Time-Informed Exploration For Robot Motion Planning


الملخص بالإنكليزية

Anytime sampling-based methods are an attractive technique for solving kino-dynamic motion planning problems. These algorithms scale well to higher dimensions and can efficiently handle state and control constraints. However, an intelligent exploration strategy is required to accelerate their convergence and avoid redundant computations. Using ideas from reachability analysis, this work defines a Time-Informed Set, that focuses the search for time-optimal kino-dynamic planning after an initial solution is found. Such a Time-Informed Set (TIS) includes all trajectories that can potentially improve the current best solution and hence exploration outside this set is redundant. Benchmarking experiments show that an exploration strategy based on the TIS can accelerate the convergence of sampling-based kino-dynamic motion planners.

تحميل البحث