ﻻ يوجد ملخص باللغة العربية
Modularity is a popular metric for quantifying the degree of community structure within a network. The distribution of the largest eigenvalue of a networks edge weight or adjacency matrix is well studied and is frequently used as a substitute for modularity when performing statistical inference. However, we show that the largest eigenvalue and modularity are asymptotically uncorrelated, which suggests the need for inference directly on modularity itself when the network size is large. To this end, we derive the asymptotic distributions of modularity in the case where the networks edge weight matrix belongs to the Gaussian Orthogonal Ensemble, and study the statistical power of the corresponding test for community structure under some alternative model. We empirically explore universality extensions of the limiting distribution and demonstrate the accuracy of these asymptotic distributions through type I error simulations. We also compare the empirical powers of the modularity based tests with some existing methods. Our method is then used to test for the presence of community structure in two real data applications.
In this paper we present a novel method for estimating the parameters of a parametric diffusion processes. Our approach is based on a closed-form Maximum Likelihood estimator for an approximating Continuous Time Markov Chain (CTMC) of the diffusion p
We investigate the asymptotic behavior of several variants of the scan statistic applied to empirical distributions, which can be applied to detect the presence of an anomalous interval with any length. Of particular interest is Studentized scan stat
We characterize completely the Gneiting class of space-time covariance functions and give more relaxed conditions on the involved functions. We then show necessary conditions for the construction of compactly supported functions of the Gneiting type.
This paper introduces a Nearly Unstable INteger-valued AutoRegressive Conditional Heteroskedasticity (NU-INARCH) process for dealing with count time series data. It is proved that a proper normalization of the NU-INARCH process endowed with a Skoroho
Stochastic models of interacting populations have crucial roles in scientific fields such as epidemiology and ecology, yet the standard approach to extending an ordinary differential equation model to a Markov chain does not have sufficient flexibili