ﻻ يوجد ملخص باللغة العربية
Many-body systems from soap bubbles to suspensions to polymers learn the drives that push them far from equilibrium. This learning has been detected with thermodynamic properties, such as work absorption and strain. We progress beyond these macroscopic properties that were first defined for equilibrium contexts: We quantify statistical mechanical learning with representation learning, a machine-learning model in which information squeezes through a bottleneck. We identify a structural parallel between representation learning and far-from-equilibrium statistical mechanics. Applying this parallel, we measure four facets of many-body systems learning: classification ability, memory capacity, discrimination ability, and novelty detection. Numerical simulations of a classical spin glass illustrate our technique. This toolkit exposes self-organization that eludes detection by thermodynamic measures. Our toolkit more reliably and more precisely detects and quantifies learning by matter.
Far-from-equilibrium many-body systems, from soap bubbles to suspensions to polymers, learn the drives that push them. This learning has been observed via thermodynamic properties, such as work absorption and strain. We move beyond these macroscopic
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea
We present a framework in which the transition between a many-body localised (MBL) phase and an ergodic one is symmetry breaking. We consider random Floquet spin chains, expressing their averaged spectral form factor (SFF) as a function of time in te
We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of spatially localized vibrational modes, serving as a model of Dynamic Nuclear Polarization. We show that even when the many-body eigenstates of th
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a l