ﻻ يوجد ملخص باللغة العربية
Computable Information Density (CID), the ratio of the length of a losslessly compressed data file to that of the uncompressed file, is a measure of order and correlation in both equilibrium and nonequilibrium systems. Here we show that correlation lengths can be obtained by decimation - thinning a configuration by sampling data at increasing intervals and recalculating the CID. When the sampling interval is larger than the systems correlation length, the data becomes incompressible. The correlation length and its critical exponents are thus accessible with no a-priori knowledge of an order parameter or even the nature of the ordering. The correlation length measured in this way agrees well with that computed from the decay of two-point correlation functions $g_{2}(r)$ when they exist. But the CID reveals the correlation length and its scaling even when $g_{2}(r)$ has no structure, as we demonstrate by cloaking the data with a Rudin-Shapiro sequence.
We obtain analytic expressions for the time correlation functions of a liquid of spherical particles, exact in the limit of high dimensions $d$. The derivation is long but straightforward: a dynamic virial expansion for which only the first two terms
We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find tha
The existence of a constant density of two-level systems (TLS) was proposed as the basis of some intriguing universal aspects of glasses at ultra-low temperatures. Here we ask whether their existence is necessary for explaining the universal density
As shown by early studies on mean-field models of the glass transition, the geometrical features of the energy landscape provide fundamental information on the dynamical transition at the Mode-Coupling temperature $T_d$. We show that active particles
We review generalized Fluctuation-Dissipation Relations which are valid under general conditions even in ``non-standard systems, e.g. out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suita