ﻻ يوجد ملخص باللغة العربية
In this work we probe the possibility of high-temperature conventional superconductivity in the boron-carbon system, using ab-initio screening. A database of 320 metastable structures with fixed composition (50$%$/50$%$) is generated with the Minima-Hopping method, and characterized with electronic and vibrational descriptors. Full electron-phonon calculations on sixteen representative structures allow to identify general trends in $T_{textrm{c}}$ across and within the four families in the energy landscape, and to construct an approximate $T_{textrm{c}}$ predictor, based on transparently interpretable and easily computable electronic and vibrational descriptors. Based on these, we estimate that around 10$%$ of all metallic structures should exhibit $T_{textrm{c}}$s above 30 $K$. This work is a first step towards ab-initio design of new high-$T_{textrm{c}}$ superconductors.
In this work, we show that the same theoretical tools that successfully explain other hydrides systems under pressure seem to be at odds with the recently claimed conventional room temperature superconductivity of the carbonaceous sulfur hydride. We
It is a honor to write a contribution on this memorial for Sandro Massidda. For both of us, at different stages of our life, Sandro was first and foremost a friend. We both admired his humble, playful and profound approach to life and physics. In thi
We survey the landscape of binary hydrides across the entire periodic table from 10 to 500 GPa using a crystal structure prediction method. Building a critical temperature ($T_c$) model, with inputs arising from density of states calculations and Gas
Recent theoretical and experimental studies of hydrogen-rich materials at megabar pressures (i.e., >100 GPa) have led to the discovery of very high-temperature superconductivity in these materials. Lanthanum superhydride LaH$_{10}$ has been of partic
The discovery of high temperature superconductivity in the cuprates in 1986 triggered a spectacular outpouring of creative and innovative scientific inquiry. Much has been learned over the ensuing 28 years about the novel forms of quantum matter that