Sedimentation of random suspensions and the effect of hyperuniformity


الملخص بالإنكليزية

This work is concerned with the mathematical analysis of the bulk rheology of random suspensions of rigid particles settling under gravity in viscous fluids. Each particle generates a fluid flow that in turn acts on other particles and hinders their settling. In an equilibrium perspective, for a given ensemble of particle positions, we analyze both the associated mean settling speed and the velocity fluctuations of individual particles. In the 1970s, Batchelor gave a proper definition of the mean settling speed, a 60-year-old open problem in physics, based on the appropriate renormalization of long-range particle contributions. In the 1980s, a celebrated formal calculation by Caflisch and Luke suggested that velocity fluctuations in dimension $d=3$ should diverge with the size of the sedimentation tank, contradicting both intuition and experimental observations. The role of long-range self-organization of suspended particles in form of hyperuniformity was later put forward to explain additional screening of this divergence in steady-state observations. In the present contribution, we develop the first rigorous theory that allows to justify all these formal calculations of the physics literature.

تحميل البحث