ﻻ يوجد ملخص باللغة العربية
The novel coronavirus disease (COVID-19) is a highly contagious respiratory disease that was first detected in Wuhan, China in December 2019, and has since spread around the globe, claiming more than 69,000 lives by the time this protocol is written. It has been widely acknowledged that the most effective public policy to mitigate the pandemic is emph{social and physical distancing}: keeping at least six feet away from people, working from home, closing non-essential businesses, etc. There have been a lot of anecdotal evidences suggesting that social distancing has a causal effect on disease mitigation; however, few studies have investigated the effect of social distancing on disease mitigation in a transparent and statistically-sound manner. We propose to perform an optimal non-bipartite matching to pair counties with similar observed covariates but vastly different average social distancing scores during the first week (March 16th through Match 22nd) of Presidents emph{15 Days to Slow the Spread} campaign. We have produced a total of $302$ pairs of two U.S. counties with good covariate balance on a total of $16$ important variables. Our primary outcome will be the average observed illness collected by Kinsa Inc. two weeks after the intervention period. Although the observed illness does not directly measure COVID-19, it reflects a real-time aspect of the pandemic, and unlike confirmed cases, it is much less confounded by counties testing capabilities. We also consider observed illness three weeks after the intervention period as a secondary outcome. We will test a proportional treatment effect using a randomization-based test with covariance adjustment and conduct a sensitivity analysis.
The 1918 influenza pandemic was characterized by multiple epidemic waves. We investigated into reactive social distancing, a form of behavioral responses, and its effect on the multiple influenza waves in the United Kingdom. Two forms of reactive soc
The outbreak of the novel coronavirus, COVID-19, has been declared a pandemic by the WHO. The structures of social contact critically determine the spread of the infection and, in the absence of vaccines, the control of these structures through large
Social distancing remains an important strategy to combat the COVID-19 pandemic in the United States. However, the impacts of specific state-level policies on mobility and subsequent COVID-19 case trajectories have not been completely quantified. Usi
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several of these (epidemic) models to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases tha
In this paper, we introduce a novel modeling framework for incorporating fear of infection and frustration with social distancing into disease dynamics. We show that the resulting SEIR behavior-perception model has three principal modes of qualitativ