ترغب بنشر مسار تعليمي؟ اضغط هنا

How do eyes and brain search a randomly structured uninformative scene? Exploiting a basic interplay of attention and memory

53   0   0.0 ( 0 )
 نشر من قبل Lorenzo Resca Dr.
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We tracked the eye movements of seven young and seven older adults performing a conjunctive visual search task similar to that performed by two highly trained monkeys in an original influential study of Motter and Belky (1998a, 1998b). We obtained results consistent with theirs regarding elements of perception, selection, attention and object recognition, but we found a much greater role played by long-range memory. A design inadequacy in the original Motter-Belky study is not sufficient to explain such discrepancy, nor is the high level of training of their monkeys. Perhaps monkeys and humans do not use mnemonic resources compatibly already in basic visual search tasks, contrary to a common expectation, further supported by cortical representation studies. We also found age-related differences in various measures of eye movements, consistently indicating slightly reduced conspicuity areas for the older adults, hence, correspondingly reduced processing and memory capacities. However, because of sample size and age differential limitations, statistically significant differences were found only for a few variables, most notably overall reaction times. Results reported here provide the basis for demonstrating the formation of spiraling or circulating patterns in the eye movement trajectories and for developing corresponding computational models and simulations.



قيم البحث

اقرأ أيضاً

Neurodegenerative diseases and traumatic brain injuries (TBI) are among the main causes of cognitive dysfunction in humans. Both manifestations exhibit the extensive presence of focal axonal swellings (FAS). FAS compromises the information encoded in spike trains, thus leading to potentially severe functional deficits. Complicating our understanding of the impact of FAS is our inability to access small scale injuries with non-invasive methods, the overall complexity of neuronal pathologies, and our limited knowledge of how networks process biological signals. Building on Hopfields pioneering work, we extend a model for associative memory to account for FAS and its impact on memory encoding. We calibrate all FAS parameters from biophysical observations of their statistical distribution and size, providing a framework to simulate the effects of brain disorders on memory recall performance. A face recognition example is used to demonstrate and validate the functionality of the novel model. Our results link memory recall ability to observed FAS statistics, allowing for a description of different stages of brain disorders within neuronal networks. This provides a first theoretical model to bridge experimental observations of FAS in neurodegeneration and TBI with compromised memory recall, thus closing the large gap between theory and experiment on how biological signals are processed in damaged, high-dimensional functional networks. The work further lends new insight into positing diagnostic tools to measure cognitive deficits.
The anatomically layered structure of a human brain results in leveled functions. In all these levels of different functions, comparison, feedback and imitation are the universal and crucial mechanisms. Languages, symbols and tools play key roles in the development of human brain and entire civilization.
With memory encoding reliant on persistent changes in the properties of synapses, a key question is how can memories be maintained from days to months or a lifetime given molecular turnover? It is likely that positive feedback loops are necessary to persistently maintain the strength of synapses that participate in encoding. Such feedback may occur within signal-transduction cascades and/or the regulation of translation, and it may occur within specific subcellular compartments or within neuronal networks. Not surprisingly, numerous positive feedback loops have been proposed. Some posited loops operate at the level of biochemical signal transduction cascades, such as persistent activation of calcium/calmodulin kinase II or protein kinase M. Another level consists of feedback loops involving transcriptional, epigenetic and translational pathways, and autocrine actions of growth factors such as BDNF. Finally, at the neuronal network level, recurrent reactivation of cell assemblies encoding memories is likely to be essential for late maintenance of memory. These levels are not isolated, but linked by shared components of feedback loops. Here, we review characteristics of some commonly discussed feedback loops proposed to underlie the maintenance of memory and long-term synaptic plasticity, assess evidence for and against their necessity, and suggest experiments that could further delineate the dynamics of these feedback loops. We also discuss crosstalk between proposed loops, and ways in which such interaction can facilitate the rapidity and robustness of memory formation and storage.
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animals brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 150 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.
Entropy is a classical measure to quantify the amount of information or complexity of a system. Various entropy-based measures such as functional and spectral entropies have been proposed in brain network analysis. However, they are less widely used than traditional graph theoretic measures such as global and local efficiencies because either they are not well-defined on a graph or difficult to interpret its biological meaning. In this paper, we propose a new entropy-based graph invariant, called volume entropy. It measures the exponential growth rate of the number of paths in a graph, which is a relevant measure if information flows through the graph forever. We model the information propagation on a graph by the generalized Markov system associated to the weighted edge-transition matrix. We estimate the volume entropy using the stationary equation of the generalized Markov system. A prominent advantage of using the stationary equation is that it assigns certain distribution of weights on the edges of the brain graph, which we call the stationary distribution. The stationary distribution shows the information capacity of edges and the direction of information flow on a brain graph. The simulation results show that the volume entropy distinguishes the underlying graph topology and geometry better than the existing graph measures. In brain imaging data application, the volume entropy of brain graphs was significantly related to healthy normal aging from 20s to 60s. In addition, the stationary distribution of information propagation gives a new insight into the information flow of functional brain graph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا