ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic assembly of active colloids: theory and simulation

63   0   0.0 ( 0 )
 نشر من قبل Ran Ni
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Because of consuming energy to drive their motion, systems of active colloids are intrinsically out of equilibrium. In the past decade, a variety of intriguing dynamic patterns have been observed in systems of active colloids, and they offer a new platform for studying non-equilibrium physics, in which computer simulation and analytical theory have played an important role. Here we review the recent progress in understanding the dynamic assembly of active colloids by using numerical and analytical tools. We review the progress in understanding the motility induced phase separation in the past decade, followed by the discussion on the effect of shape anisotropy and hydrodynamics on the dynamic assembly of active colloids.



قيم البحث

اقرأ أيضاً

We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based on the independently measured viscosity of the DNA solution: the drag force is larger than expected. We attribute this to the accumulation of DNA infront of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.
We introduce a representative minimal model for phoretically interacting active colloids. Combining kinetic theory, linear stability analyses, and a general relation between self-propulsion and phoretic interactions in auto-diffusiophoretic and auto- thermophoretic Janus colloids collapses the parameter space to two dimensions: area fraction and Peclet number. This collapse arises when the lifetime of the self-generated phoretic fields is not too short, and leads to a universal phase diagram showing that phoretic interactions {it generically} induce pattern formation in typical Janus colloids, even at very low density. The resulting patterns include waves and dynamic aggregates closely resembling the living clusters found in experiments on dilute suspension of Janus colloids.
Polar active particles constitute a wide class of synthetic colloids that are able to propel along a preferential direction, given by their polar axis. Here, we demonstrate a generic self-phoretic mechanism that leads to their spontaneous chiralizati on through a symmetry breaking instability. We find that the transition of an active particle from a polar to a chiral symmetry is characterized by the emergence of active rotation and of circular trajectories. We show that the instability is driven by the advection of a solute that interacts differently with the two portions of the particle surface and it occurs through a supercritical pitchfork bifurcation.
Self-propelled phoretic colloids have recently emerged as a promising avenue for the design of artificial swimmers. These swimmers combine purely phoretic interactions with intricate hydrodynamics which critically depend on the swimmer shape. Thermop hobic dimer shaped colloids are here investigated by means of hydrodynamic simulations, from the single particle motion to their collective behavior. The combination of phoretic repulsion with hydrodynamic lateral attraction favors the formation of planar moving clusters. The resulting hydrodynamic assembly in flattened swarms is therefore very specific to these dimeric active colloids.
89 - B. Liebchen , H. Lowen 2018
Despite a mounting evidence that the same gradients which active colloids use for swimming, induce important cross-interactions (phoretic interaction), they are still ignored in most many-body descriptions, perhaps to avoid complexity and a zoo of un known parameters. Here we derive a simple model, which reduces phoretic far-field interactions to a pair-interaction whose strength is mainly controlled by one genuine parameter (swimming speed). The model suggests that phoretic interactions are generically important for autophoretic colloids (unless effective screening of the phoretic fields is strong) and should dominate over hydrodynamic interactions for the typical case of half-coating and moderately nonuniform surface mobilities. Unlike standard minimal models, but in accordance with canonical experiments, our model generically predicts dynamic clustering in active colloids at low density. This suggests that dynamic clustering can emerge from the interplay of screened phoretic attractions and active diffusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا