ﻻ يوجد ملخص باللغة العربية
Closed-shell light-emitting diodes (LEDs) suffer from the internal quantum efficiency (IQE) limitation imposed by optically inactive triplet excitons. Here we show an undiscovered emission mechanism of lead-halide-perovskites (LHPs) APbX$_3$ (A=Cs/CN$_2$H$_5$; X=Cl/Br/I) that circumvents the efficiency limit of closed-shell LEDs. Though efficient emission is prohibited by optically inactive $J=0$ in inversion symmetric LHPs, the anharmonicity arising from stereochemistry of Pb and resonant orbital-bonding network along the imaginary A$^+cdots$X$^-$ (T$_{1u}$) transverse optical (TO) modes, breaks the inversion symmetry and introduces disorder and Rashba-Dresselhaus spin-orbit coupling (RD-SOC). This leads to bright co-helical and dark anti-helical excitons. Many-body theory and first-principles calculations affirm that the optically active co-helical exciton is the lowest excited state in organic/inorganic LHPs. Thus, RD-SOC can drive to achieve the ideal 50 $%$ IQE by utilizing anharmonicity, much over the 25 $%$ IQE limitation for closed-shell LEDs.
We study the texture of helical currents in metallic planar strips in the presence of Rashba spin-orbit coupling (RSOC) on the lattice at zero temperature. In the noninteracting case, and in the absence of external electromagnetic sources, we determi
Theoretical frameworks used to qualitatively and quantitatively describe nuclear dynamics in solids are often based on the harmonic approximation. However, this approximation is known to become inaccurate or to break down completely in many modern fu
The Rashba effect is fundamental to the physics of two-dimensional electron systems and underlies a variety of spintronic phenomena. It has been proposed that the formation of Rashba-type spin splittings originates microscopically from the existence
In the context of one-dimensional fermionic systems, helical Luttiger liquids are not only characterized by intriguing spin properties, but also by the possibility to be manipulated by means of electrostatic gates, exploiting finite Rashba coupling.
The efficiencies of photonic devices are primarily governed by radiative quantum efficiency, which is a property given by the light emitting material. Quantitative characterization for carbon nanotubes, however, has been difficult despite being a pro