Imaging and localizing individual atoms interfaced with a nanophotonic waveguide


الملخص بالإنكليزية

Single particle-resolved fluorescence imaging is an enabling technology in cold-atom physics. However, so far, this technique was not available for nanophotonic atom-light interfaces. Here, we image single atoms that are trapped and optically interfaced using an optical nanofiber. Near-resonant light is scattered off the atoms and imaged while counteracting heating mechanisms via degenerate Raman cooling. We detect trapped atoms within 150 ms and record image sequences of given atoms. Building on our technique, we perform two experiments which are conditioned on the number and position of the nanofiber-trapped atoms. We measure the transmission of nanofiber-guided resonant light and verify its exponential scaling in the few-atom limit, in accordance with Beer-Lamberts law. Moreover, depending on the interatomic distance, we observe interference of the fields that two simultaneously trapped atoms emit into the nanofiber. The demonstrated technique enables post-selection and possible feedback schemes and thereby opens the road towards a new generation of experiments in quantum nanophotonics.

تحميل البحث