ﻻ يوجد ملخص باللغة العربية
Single particle-resolved fluorescence imaging is an enabling technology in cold-atom physics. However, so far, this technique was not available for nanophotonic atom-light interfaces. Here, we image single atoms that are trapped and optically interfaced using an optical nanofiber. Near-resonant light is scattered off the atoms and imaged while counteracting heating mechanisms via degenerate Raman cooling. We detect trapped atoms within 150 ms and record image sequences of given atoms. Building on our technique, we perform two experiments which are conditioned on the number and position of the nanofiber-trapped atoms. We measure the transmission of nanofiber-guided resonant light and verify its exponential scaling in the few-atom limit, in accordance with Beer-Lamberts law. Moreover, depending on the interatomic distance, we observe interference of the fields that two simultaneously trapped atoms emit into the nanofiber. The demonstrated technique enables post-selection and possible feedback schemes and thereby opens the road towards a new generation of experiments in quantum nanophotonics.
We study theoretically a laser-driven one-dimensional chain of atoms interfaced with the guided optical modes of a nanophotonic waveguide. The period of the chain and the orientation of the laser field can be chosen such that emission occurs predomin
Optical waveguides in the form of glass fibers are the backbone of global telecommunication networks. In such optical fibers, the light is guided over long distances by continuous total internal reflection which occurs at the interface between the fi
We demonstrate fluorescence microscopy of individual fermionic potassium atoms in a 527-nm-period optical lattice. Using electromagnetically induced transparency (EIT) cooling on the 770.1-nm D$_1$ transition of $^{40}$K, we find that atoms remain at
In analogy to transistors in classical electronic circuits, a quantum optical switch is an important element of quantum circuits and quantum networks. Operated at the fundamental limit where a single quantum of light or matter controls another field
We report experimental observations of large Bragg reflection from arrays of cold atoms trapped near a one-dimensional nanoscale waveguide. By using an optical lattice in the evanescent field surrounding a nanofiber with a period nearly commensurate