ﻻ يوجد ملخص باللغة العربية
A recent study shows that bars can be induced via interaction of galaxy clusters, but it has been unclear if the bar formation by the interaction between clusters is related to the enhancement of star formation. We study galaxies in 105 galaxy clusters at $0.015<z<0.060$ detected from Sloan Digital Sky Survey data, in order to examine whether the fraction of star-forming galaxies ($f_mathrm{sf}$) in 16 interacting clusters is enhanced compared with that of the other non-interacting clusters and to investigate the possible connection between the $f_mathrm{sf}$ enhancement and the bar formation in interacting clusters. We find that $f_mathrm{sf}$ is moderately higher ($sim20%$) in interacting clusters than in non-interacting clusters and that the enhancement of star formation in interacting clusters occurs only in moderate-mass disk-dominated galaxies ($10^{10.0} le M_mathrm{star}/M_{odot} < 10^{10.4}$ and the bulge-to-total light ratio is $le0.5$). We also find that the enhancement of $f_mathrm{sf}$ in moderate-mass disk-dominated galaxies in interacting clusters is mostly due to the increase of the number of barred galaxies. Our result suggests that the cluster-cluster interaction can simultaneously induce bars and star formation in disk galaxies.
Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical ring forms when material collects near a
Bars inhabit the majority of local-Universe disk galaxies and may be important drivers of galaxy evolution through the redistribution of gas and angular momentum within disks. We investigate the star formation and gas properties of bars in galaxies s
This study explored the GALEX ultraviolet (UV) properties of optical red sequence galaxies in 4 rich Abell clusters at z leq 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the
Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely
The HI in galaxies often extends past their conventionally defined optical extent. I report results from our team which has been probing low intensity star formation in outer disks using imaging in H-alpha and ultraviolet. Using a sample of hundreds