ﻻ يوجد ملخص باللغة العربية
We introduce the ARTEMIS simulations, a new set of 42 zoomed-in, high-resolution (baryon particle mass of ~ 2x10^4 Msun/h), hydrodynamical simulations of galaxies residing in haloes of Milky Way mass, simulated with the EAGLE galaxy formation code with re-calibrated stellar feedback. In this study, we analyse the structure of stellar haloes, specifically the mass density, surface brightness, metallicity, colour and age radial profiles, finding generally very good agreement with recent observations of local galaxies. The stellar density profiles are well fitted by broken power laws, with inner slopes of ~ -3, outer slopes of ~ -4 and break radii that are typically ~ 20-40 kpc. The break radii generally mark the transition between in situ formation and accretion-driven formation of the halo. The metallicity, colour and age profiles show mild large-scale gradients, particularly when spherically-averaged or viewed along the major axes. Along the minor axes, however, the profiles are nearly flat, in agreement with observations. Overall, the structural properties can be understood by two factors: that in situ stars dominate the inner regions and that they reside in a spatially-flattened distribution that is aligned with the disc. Observations targeting both the major and minor axes of galaxies are thus required to obtain a complete picture of stellar haloes.
We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly-inclined Milky Way-mass disc galaxies using HST
We study the formation of stellar haloes in three Milky Way-mass galaxies using cosmological smoothed particle hydrodynamics simulations, focusing on the subset of halo stars that form in situ, as opposed to those accreted from satellites. In situ st
We present a comprehensive study of the chemical properties of the stellar haloes of Milky-Way mass galaxies, analysing the transition between the inner to the outer haloes. We find the transition radius between the relative dominance of the inner-ha
We investigate the chemical and kinematic properties of the diffuse stellar haloes of six simulated Milky Way-like galaxies from the Aquarius Project. Binding energy criteria are adopted to defined two dynamically distinct stellar populations: the di
Stellar streams record the accretion history of their host galaxy. We present a set of simulated streams from disrupted dwarf galaxies in 13 cosmological simulations of Milky Way (MW)-mass galaxies from the FIRE-2 suite at $z=0$, including 7 isolated