ترغب بنشر مسار تعليمي؟ اضغط هنا

An estimate for the Steklov zeta function of a planar domain derived from a first variation formula

214   0   0.0 ( 0 )
 نشر من قبل Alexandre Jollivet
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Steklov zeta function $zeta$ $Omega$ of a smooth bounded simply connected planar domain $Omega$ $subset$ R 2 of perimeter 2$pi$. We provide a first variation formula for $zeta$ $Omega$ under a smooth deformation of the domain. On the base of the formula, we prove that, for every s $in$ (--1, 0) $cup$ (0, 1), the difference $zeta$ $Omega$ (s) -- 2$zeta$ R (s) is non-negative and is equal to zero if and only if $Omega$ is a round disk ($zeta$ R is the classical Riemann zeta function). Our approach gives also an alternative proof of the inequality $zeta$ $Omega$ (s) -- 2$zeta$ R (s) $ge$ 0 for s $in$ (--$infty$, --1] $cup$ (1, $infty$); the latter fact was proved in our previous paper [2018] in a different way. We also provide an alternative proof of the equality $zeta$ $Omega$ (0) = 2$zeta$ R (0) obtained by Edward and Wu [1991].



قيم البحث

اقرأ أيضاً

We consider the zeta function $zeta_Omega$ for the Dirichlet-to-Neumann operator of a simply connected planar domain $Omega$ bounded by a smooth closed curve of perimeter $2pi$. We prove that $zeta_Omega(0)ge zeta_{mathbb{D}}(0)$ with equality if and only if $Omega$ is a disk where $mathbb{D}$ denotes the closed unit disk. We also provide an elementary proof that for a fixed real $s$ satisfying $sle-1$ the estimate $zeta_Omega(s)ge zeta_{mathbb{D}}(s)$ holds with equality if and only if $Omega$ is a disk. We then bring examples of domains $Omega$ close to the unit disk where this estimate fails to be extended to the interval $(0,2)$. Other computations related to previous works are also detailed in the remaining part of the text.
144 - Enrico De Micheli 2020
In this paper, we prove a new integral representation for the Bessel function of the first kind $J_mu(z)$, which holds for any $mu,zinmathbb{C}$.
350 - Remi Carles 2012
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We sho w how the nonlinear system may appear from different physical models. We focus our attention on the large time behavior of the solution. We show the existence of a nonlinear scattering operator, which is reminiscent of long range scattering for the nonlinear Schrodinger equation, and which can be compared with its linear counterpart.
Formulas relating Poincare-Steklov operators for Schroedinger equations related by Darboux-Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.
For an arbitrary open, nonempty, bounded set $Omega subset mathbb{R}^n$, $n in mathbb{N}$, and sufficiently smooth coefficients $a,b,q$, we consider the closed, strictly positive, higher-order differential operator $A_{Omega, 2m} (a,b,q)$ in $L^2(Ome ga)$ defined on $W_0^{2m,2}(Omega)$, associated with the higher-order differential expression $$ tau_{2m} (a,b,q) := bigg(sum_{j,k=1}^{n} (-i partial_j - b_j) a_{j,k} (-i partial_k - b_k)+qbigg)^m, quad m in mathbb{N}, $$ and its Krein--von Neumann extension $A_{K, Omega, 2m} (a,b,q)$ in $L^2(Omega)$. Denoting by $N(lambda; A_{K, Omega, 2m} (a,b,q))$, $lambda > 0$, the eigenvalue counting function corresponding to the strictly positive eigenvalues of $A_{K, Omega, 2m} (a,b,q)$, we derive the bound $$ N(lambda; A_{K, Omega, 2m} (a,b,q)) leq C v_n (2pi)^{-n} bigg(1+frac{2m}{2m+n}bigg)^{n/(2m)} lambda^{n/(2m)} , quad lambda > 0, $$ where $C = C(a,b,q,Omega)>0$ (with $C(I_n,0,0,Omega) = |Omega|$) is connected to the eigenfunction expansion of the self-adjoint operator $widetilde A_{2m} (a,b,q)$ in $L^2(mathbb{R}^n)$ defined on $W^{2m,2}(mathbb{R}^n)$, corresponding to $tau_{2m} (a,b,q)$. Here $v_n := pi^{n/2}/Gamma((n+2)/2)$ denotes the (Euclidean) volume of the unit ball in $mathbb{R}^n$. Our method of proof relies on variational considerations exploiting the fundamental link between the Krein--von Neumann extension and an underlying abstract buckling problem, and on the distorted Fourier transform defined in terms of the eigenfunction transform of $widetilde A_{2} (a,b,q)$ in $L^2(mathbb{R}^n)$. We also consider the analogous bound for the eigenvalue counting function for the Friedrichs extension $A_{F,Omega, 2m} (a,b,q)$ in $L^2(Omega)$ of $A_{Omega, 2m} (a,b,q)$. No assumptions on the boundary $partial Omega$ of $Omega$ are made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا