ترغب بنشر مسار تعليمي؟ اضغط هنا

BCNet: Learning Body and Cloth Shape from A Single Image

124   0   0.0 ( 0 )
 نشر من قبل Boyi Jiang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the problem to automatically reconstruct garment and body shapes from a single near-front view RGB image. To this end, we propose a layered garment representation on top of SMPL and novelly make the skinning weight of garment independent of the body mesh, which significantly improves the expression ability of our garment model. Compared with existing methods, our method can support more garment categories and recover more accurate geometry. To train our model, we construct two large scale datasets with ground truth body and garment geometries as well as paired color images. Compared with single mesh or non-parametric representation, our method can achieve more flexible control with separate meshes, makes applications like re-pose, garment transfer, and garment texture mapping possible. Code and some data is available at https://github.com/jby1993/BCNet.



قيم البحث

اقرأ أيضاً

We present a single-image data-driven method to automatically relight images with full-body humans in them. Our framework is based on a realistic scene decomposition leveraging precomputed radiance transfer (PRT) and spherical harmonics (SH) lighting . In contrast to previous work, we lift the assumptions on Lambertian materials and explicitly model diffuse and specular reflectance in our data. Moreover, we introduce an additional light-dependent residual term that accounts for errors in the PRT-based image reconstruction. We propose a new deep learning architecture, tailored to the decomposition performed in PRT, that is trained using a combination of L1, logarithmic, and rendering losses. Our model outperforms the state of the art for full-body human relighting both with synthetic images and photographs.
Despite significant progress in monocular depth estimation in the wild, recent state-of-the-art methods cannot be used to recover accurate 3D scene shape due to an unknown depth shift induced by shift-invariant reconstruction losses used in mixed-dat a depth prediction training, and possible unknown camera focal length. We investigate this problem in detail, and propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image, and then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape. In addition, we propose an image-level normalized regression loss and a normal-based geometry loss to enhance depth prediction models trained on mixed datasets. We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot dataset generalization. Code is available at: https://git.io/Depth
We present a method for estimating neural scenes representations of objects given only a single image. The core of our method is the estimation of a geometric scaffold for the object and its use as a guide for the reconstruction of the underlying rad iance field. Our formulation is based on a generative process that first maps a latent code to a voxelized shape, and then renders it to an image, with the object appearance being controlled by a second latent code. During inference, we optimize both the latent codes and the networks to fit a test image of a new object. The explicit disentanglement of shape and appearance allows our model to be fine-tuned given a single image. We can then render new views in a geometrically consistent manner and they represent faithfully the input object. Additionally, our method is able to generalize to images outside of the training domain (more realistic renderings and even real photographs). Finally, the inferred geometric scaffold is itself an accurate estimate of the objects 3D shape. We demonstrate in several experiments the effectiveness of our approach in both synthetic and real images.
Cloth-Changing person re-identification (CC-ReID) aims at matching the same person across different locations over a long-duration, e.g., over days, and therefore inevitably meets challenge of changing clothing. In this paper, we focus on handling we ll the CC-ReID problem under a more challenging setting, i.e., just from a single image, which enables high-efficiency and latency-free pedestrian identify for real-time surveillance applications. Specifically, we introduce Gait recognition as an auxiliary task to drive the Image ReID model to learn cloth-agnostic representations by leveraging personal unique and cloth-independent gait information, we name this framework as GI-ReID. GI-ReID adopts a two-stream architecture that consists of a image ReID-Stream and an auxiliary gait recognition stream (Gait-Stream). The Gait-Stream, that is discarded in the inference for high computational efficiency, acts as a regulator to encourage the ReID-Stream to capture cloth-invariant biometric motion features during the training. To get temporal continuous motion cues from a single image, we design a Gait Sequence Prediction (GSP) module for Gait-Stream to enrich gait information. Finally, a high-level semantics consistency over two streams is enforced for effective knowledge regularization. Experiments on multiple image-based Cloth-Changing ReID benchmarks, e.g., LTCC, PRCC, Real28, and VC-Clothes, demonstrate that GI-ReID performs favorably against the state-of-the-arts. Codes are available at https://github.com/jinx-USTC/GI-ReID.
Many images shared over the web include overlaid objects, or visual motifs, such as text, symbols or drawings, which add a description or decoration to the image. For example, decorative text that specifies where the image was taken, repeatedly appea rs across a variety of different images. Often, the reoccurring visual motif, is semantically similar, yet, differs in location, style and content (e.g. text placement, font and letters). This work proposes a deep learning based technique for blind removal of such objects. In the blind setting, the location and exact geometry of the motif are unknown. Our approach simultaneously estimates which pixels contain the visual motif, and synthesizes the underlying latent image. It is applied to a single input image, without any user assistance in specifying the location of the motif, achieving state-of-the-art results for blind removal of both opaque and semi-transparent visual motifs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا