ﻻ يوجد ملخص باللغة العربية
The Markov-modulated Poisson process is utilised for count modelling in a variety of areas such as queueing, reliability, network and insurance claims analysis. In this paper, we extend the Markov-modulated Poisson process framework through the introduction of a flexible frequency perturbation measure. This contribution enables known information of observed event arrivals to be naturally incorporated in a tractable manner, while the hidden Markov chain captures the effect of unobservable drivers of the data. In addition to increases in accuracy and interpretability, this method supplements analysis of the latent factors. Further, this procedure naturally incorporates data features such as over-dispersion and autocorrelation. Additional insights can be generated to assist analysis, including a procedure for iterative model improvement. Implementation difficulties are also addressed with a focus on dealing with large data sets, where latent models are especially advantageous due the large number of observations facilitating identification of hidden factors. Namely, computational issues such as numerical underflow and high processing cost arise in this context and in this paper, we produce procedures to overcome these problems. This modelling framework is demonstrated using a large insurance data set to illustrate theoretical, practical and computational contributions and an empirical comparison to other count models highlight the advantages of the proposed approach.
We introduce a non-homogeneous fractional Poisson process by replacing the time variable in the fractional Poisson process of renewal type with an appropriate function of time. We characterize the resulting process by deriving its non-local governing
We translate a coagulation-framentation model, describing the dynamics of animal group size distributions, into a model for the population distribution and associate the blue{nonlinear} evolution equation with a Markov jump process of a type introduc
The fractional non-homogeneous Poisson process was introduced by a time-change of the non-homogeneous Poisson process with the inverse $alpha$-stable subordinator. We propose a similar definition for the (non-homogeneous) fractional compound Poisson
Non-homogeneous Poisson processes are used in a wide range of scientific disciplines, ranging from the environmental sciences to the health sciences. Often, the central object of interest in a point process is the underlying intensity function. Here,
Aiming to generate realistic synthetic times series of the bivariate process of daily mean temperature and precipitations, we introduce a non-homogeneous hidden Markov model. The non-homogeneity lies in periodic transition probabilities between the h