ترغب بنشر مسار تعليمي؟ اضغط هنا

On BV homeomorphisms

132   0   0.0 ( 0 )
 نشر من قبل Jan Mal\\'y
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain the rectifiability of the graph of a bounded variation homeomorphism $f$ in the plane and relations between gradients of $f$ and its inverse. Further, we show an example of a bounded variation homeomorphism $f$ in the plane which satisfies the $(N)$ and $(N^{-1})$ properties and strict positivity of Jacobian of both itself and its inverse, but neither $f$ nor $f^{-1}$ is Sobolev.



قيم البحث

اقرأ أيضاً

We present a classification of strict limits of planar BV homeomorphisms. The authors and S. Hencl showed in a previous work cite{CHKR} that such mappings allow for cavitations and fractures singularities but fulfill a suitable generalization of the INV condition. As pointed out by J. Ball cite{B}, these features are physically expected by limit configurations of elastic deformations. In the present work we develop a suitable generalization of the emph{no-crossing} condition introduced by De Philippis and Pratelli in cite{PP} to describe weak limits of planar Sobolev homeomorphisms that we call emph{BV no-crossing} condition, and we show that a planar mapping satisfies this property if and only if it can be approximated strictly by homeomorphisms of bounded variations.
We provide a new geometric proof of Reimanns theorem characterizing quasiconformal mappings as the ones preserving functions of bounded mean oscillation. While our proof is new already in the Euclidean spaces, it is applicable in Heisenberg groups as well as in more general stratified nilpotent Carnot groups.
We show that given a homeomorphism $f:GrightarrowOmega$ where $G$ is a open subset of $mathbb{R}^2$ and $Omega$ is a open subset of a $2$-Ahlfors regular metric measure space supporting a weak $(1,1)$-Poincare inequality, it holds $fin BV_{operatorna me{loc}}(G,Omega)$ if and only $f^{-1}in BV_{operatorname{loc}}(Omega,G)$. Further if $f$ satisfies the Luzin N and N$^{-1}$ conditions then $fin W^{1,1}_{operatorname{loc}}(G,Omega)$ if and only if $f^{-1}in W^{1,1}_{operatorname{loc}}(Omega,G)$.
122 - Dalila Azzam-Laouir 2021
This paper concerns existence of right-continuous with bounded variation solutions of a perturbed second-order differential inclusion governed by time and state-dependent maximal monotone operators.
178 - E. Shchepin , V. Valov 2021
It is established that any homeomorphism between two closed negligible subset of $D^tau$ can be extended to an autohomeomorphism of $D^tau$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا