ﻻ يوجد ملخص باللغة العربية
We introduce a new large-scale dataset that links the assessment of image quality issues to two practical vision tasks: image captioning and visual question answering. First, we identify for 39,181 images taken by people who are blind whether each is sufficient quality to recognize the content as well as what quality flaws are observed from six options. These labels serve as a critical foundation for us to make the following contributions: (1) a new problem and algorithms for deciding whether an image is insufficient quality to recognize the content and so not captionable, (2) a new problem and algorithms for deciding which of six quality flaws an image contains, (3) a new problem and algorithms for deciding whether a visual question is unanswerable due to unrecognizable content versus the content of interest being missing from the field of view, and (4) a novel application of more efficiently creating a large-scale image captioning dataset by automatically deciding whether an image is insufficient quality and so should not be captioned. We publicly-share our datasets and code to facilitate future extensions of this work: https://vizwiz.org.
Federated learning is a new machine learning paradigm which allows data parties to build machine learning models collaboratively while keeping their data secure and private. While research efforts on federated learning have been growing tremendously
Image composition targets at inserting a foreground object on a background image. Most previous image composition methods focus on adjusting the foreground to make it compatible with background while ignoring the shadow effect of foreground on the ba
In this paper, we present a large-scale Diverse Real-world image Super-Resolution dataset, i.e., DRealSR, as well as a divide-and-conquer Super-Resolution (SR) network, exploring the utility of guiding SR model with low-level image components. DRealS
Filtering real-world color images is challenging due to the complexity of noise that can not be formulated as a certain distribution. However, the rapid development of camera lens pos- es greater demands on image denoising in terms of both efficiency
Different from traditional image super-resolution task, real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image. Most of the traditional image SR obtains the LR sample by appl