ﻻ يوجد ملخص باللغة العربية
This paper concerns the minimax center of a collection of linear subspaces. When the subspaces are $k$-dimensional subspaces of $mathbb{R}^n$, this can be cast as finding the center of a minimum enclosing ball on a Grassmann manifold, Gr$(k,n)$. For subspaces of different dimension, the setting becomes a disjoint union of Grassmannians rather than a single manifold, and the problem is no longer well-defined. However, natural geometric maps exist between these manifolds with a well-defined notion of distance for the images of the subspaces under the mappings. Solving the initial problem in this context leads to a candidate minimax center on each of the constituent manifolds, but does not inherently provide intuition about which candidate is the best representation of the data. Additionally, the solutions of different rank are generally not nested so a deflationary approach will not suffice, and the problem must be solved independently on each manifold. We propose and solve an optimization problem parametrized by the rank of the minimax center. The solution is computed using a subgradient algorithm on the dual. By scaling the objective and penalizing the information lost by the rank-$k$ minimax center, we jointly recover an optimal dimension, $k^*$, and a central subspace, $U^* in$ Gr$(k^*,n)$ at the center of the minimum enclosing ball, that best represents the data.
Weight initialization plays an important role in training neural networks and also affects tremendous deep learning applications. Various weight initialization strategies have already been developed for different activation functions with different n
This survey is meant to provide an introduction to the fundamental theorem of linear algebra and the theories behind them. Our goal is to give a rigorous introduction to the readers with prior exposure to linear algebra. Specifically, we provide some
The minimum degree algorithm is one of the most widely-used heuristics for reducing the cost of solving large sparse systems of linear equations. It has been studied for nearly half a century and has a rich history of bridging techniques from data st
We describe a numerical scheme for evaluating the posterior moments of Bayesian linear regression models with partial pooling of the coefficients. The principal analytical tool of the evaluation is a change of basis from coefficient space to the spac
Given $n$ points in a $d$ dimensional Euclidean space, the Minimum Enclosing Ball (MEB) problem is to find the ball with the smallest radius which contains all $n$ points. We give a $O(ndQcal/sqrt{epsilon})$ approximation algorithm for producing an e