ﻻ يوجد ملخص باللغة العربية
The nature of $J^{pi}=1^-$ levels of $^{96}$Zr below the $beta$-decay $Q_{beta}$ value of $^{96}$Y has been investigated in high-resolution $gamma$-ray spectroscopy following the $beta$ decay as well as in a campaign of inelastic photon scattering experiments. Branching ratios extracted from $beta$ decay allow the absolute $E1$ excitation strength to be determined for levels populated in both reactions. The combined data represents a comprehensive approach to the wavefunction of $1^-$ levels below the $Q_{beta}$ value, which are investigated in the theoretical approach of the Quasiparticle Phonon Model. This study clarifies the nuclear structure properties associated with the enhanced population of high-lying levels in the $^{96}$Y$_{gs}$ $beta$ decay, one of the three most important contributors to the high-energy reactor antineutrino spectrum.
In the hydrodynamic model description of heavy ion collisions, the elliptic flow $v_2$ and triangular flow $v_3$ are sensitive to the quadrupole deformation $beta_2$ and octupole deformation $beta_3$ of the colliding nuclei. The relations between $v_
Using 9.4 g of Zr-96 and 1221 days of data from the NEMO-3 detector corresponding to 0.031 kg yr, the obtained 2vbb decay half-life measurement is [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10^19 yr. Different characteristics of the final state electrons
Anomalous Viscous Fluid Dynamics (AVFD) model calculations for $mathrm{^{96}_{44}Ru +, ^{96}_{44}Ru}$ and $mathrm{^{96}_{40}Zr +, ^{96}_{40}Zr}$ collisions ($sqrt{s_{rm NN}} = 200$ GeV) are used in concert with a charge-sensitive correlator, to test
The low energy excited $0_{2,3}^+$ states in $^{96}$Sr are amongst the most prominent examples of shape coexistence across the nuclear landscape. In this work, the neutron $[2s_{1/2}]^2$ content of the $0_{1,2,3}^+$ states in $^{96}$Sr was determined
The production of $rm{^3_Lambda H}$ and $rm{{^3_{overline Lambda}overline H}}$, as well as $rm{^3H}$, $rm{{^3overline H}}$, $rm{^3He}$, and $rm{{^3overline {He}}}$ are studied in central collisions of isobars $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_