ﻻ يوجد ملخص باللغة العربية
Chiral indices determine important properties of carbon nanotubes (CNTs). Unfortunately, their determination from high-resolution transmission electron microscopy (HRTEM) images, the most accurate method for assigning chirality, is a tedious task. We develop a Convolutional Neural Network that automatizes this process. A large and realistic training data set of CNT images is obtained by means of atomistic computer simulations coupled with the multi-slice approach for image generation. In most cases, results of the automated assignment are in excellent agreement with manual classification, and the origin of failures is identified. The current approach, which combines HRTEM imaging and deep learning algorithms allows the analysis of a statistically significant number of HRTEM images of carbon nanotubes, paving the way for robust estimates of experimental chiral distributions.
Recording atomic-resolution transmission electron microscopy (TEM) images is becoming increasingly routine. A new bottleneck is then analyzing this information, which often involves time-consuming manual structural identification. We have developed a
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative
Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single pl
Optical diffraction tomography (ODT) reconstructs a samples volumetric refractive index (RI) to create high-contrast, quantitative 3D visualizations of biological samples. However, standard implementations of ODT use interferometric systems, and so a
The motion of electrons in or near solids, liquids and gases can be tracked by forcing their ejection with attosecond x-ray pulses, derived from femtosecond lasers. The momentum of these emitted electrons carries the imprint of the electronic state.