ﻻ يوجد ملخص باللغة العربية
We study the spectral properties of $D$-dimensional $N=2$ supersymmetric lattice models. We find systematic departures from the eigenstate thermalization hypothesis (ETH) in the form of a degenerate set of ETH-violating supersymmetric (SUSY) doublets, also referred to as many-body scars, that we construct analytically. These states are stable against arbitrary SUSY-preserving perturbations, including inhomogeneous couplings. For the specific case of two-leg ladders, we provide extensive numerical evidence that shows how those states are the only ones violating the ETH, and discuss their robustness to SUSY-violating perturbations. Our work suggests a generic mechanism to stabilize quantum many-body scars in lattice models in arbitrary dimensions.
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, b
Statistical analysis of the eigenfunctions of the Anderson tight-binding model with on-site disorder on regular random graphs strongly suggests that the extended states are multifractal at any finite disorder. The spectrum of fractal dimensions $f(al
Anomalous diffusion has been widely observed by single particle tracking microscopy in complex systems such as biological cells. The resulting time series are usually evaluated in terms of time averages. Often anomalous diffusion is connected with no
We construct topological defects in two-dimensional classical lattice models and quantum chains. The defects satisfy local commutation relations guaranteeing that the partition function is independent of their path. These relations and their solution
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutatio