ﻻ يوجد ملخص باللغة العربية
It is known that line optical tweezers (LOT) can measure potential of mean force (PMF) between colloidal particles in the bulk. However, PMF obtained with LOT is empirically modified before showing the result of the final form in order to correct the potential rise at long distances. In the present letter, we derive theoretical correction methods for acquisition of PMF by using statistical mechanics. Using the new methods, PMF can be obtained without the empirical fitting equation. Through the new methods, external potential acting on the trapped two colloidal particles induced by LOT can also be obtained. As an additional study, we explain two methods for obtaining PMF between colloidal particles on a substrate surface, in which a normal single optical tweezers with a fixed focal point is used, and for obtaining PMF between colloidal particles trapped by dual-beam optical tweezers in the bulk. These methods can also obtain the external potential acting on the trapped two colloidal particles.
The present article provides an overview of the recent progress in the direct force measurements between individual pairs of colloidal particles in aqueous salt solutions. Results obtained by two different techniques are being highlighted, namely wit
In the short letter, we explain an improved transform theory for colloidal-probe atomic force microscopy (CP-AFM). CP-AFM can measure a force curve between the colloidal probe and a wall surface in a colloidal dispersion. The transform theory can est
A method for forming permanent three dimensional structures from colloidal particles using holographic optical trapping is described. Holographic optical tweezers (HOT) are used to selectively position charge stabilized colloidal particles within a f
We present a generalization of the inertial coupling (IC) [Usabiaga et al. J. Comp. Phys. 2013] which permits the resolution of radiation forces on small particles with arbitrary acoustic contrast factor. The IC method is based on a Eulerian-Lagrangi
Recently, we proposed a method that converts the force between two-large colloids into the pressure on the surface element (FPSE conversion) in a system of a colloidal solution. Using it, the density distribution of the small colloids around the larg