ﻻ يوجد ملخص باللغة العربية
We study the scattering of photons from periodically modulated quantum-optical systems. For excitation-number conserving quantum optical systems, we connect the analytic structure of the frequency-domain N-photon scattering matrix of the system to the Floquet decomposition of its effective Hamiltonian. Furthermore, it is shown that the first order contribution to the transmission or equal-time N-photon correlation spectrum with respect to the modulation frequency is completely geometric in nature i.e. it only depends on the Hamiltonian trajectory and not on the precise nature of the modulation being applied.
We propose periodically-modulated entangled states of light and show that they can be generated in two experimentally feasible schemes of nondegenerate optical parametric oscillator (NOPO): (i) driven by continuously modulated pump field; (ii) under
When applied to dynamical systems, both classical and quantum, time periodic modulations can produce complex non-equilibrium states which are often termed chaotic`. Being well understood within the unitary Hamiltonian framework, this phenomenon is le
Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence ca
We present a theoretical and numerical study of light propagation in graded-index (GRIN) multimode fibers where the core diameter has been periodically modulated along the propagation direction. The additional degree of freedom represented by the mod
We present a brief overview of some of the analytic perturbative techniques for the computation of the Floquet Hamiltonian for a periodically driven, or Floquet, quantum many-body system. The key technical points about each of the methods discussed a