ﻻ يوجد ملخص باللغة العربية
We investigate the intrinsic spectral energy distribution (SED) of active galactic nuclei (AGNs) at infrared (IR) bands with 42 $z < 0.5$ optically luminous Palomar Green survey quasars through SED decomposition. We decompose the SEDs of the 42 quasars by combining an AGN IR template library Siebenmorgen2015 that covers a wide range of the AGN parameter space with three commonly used galaxy template libraries. We determine the median AGN SED from the best-fitting results. The far-IR (FIR) contribution of our median AGN SED is significantly smaller than that of Symeonidis et al. 2016, but roughly consistent with that of Lyu et al. 2017. The AGN IR SED becomes cooler with increasing bolometric luminosity, which might be due to that more luminous AGNs might have stronger radiative feedback to change torus structures and/or their tori might have higher metallicities. Our conclusions do not depend on the choice of galaxy template libraries. However, since the predicted polycyclic aromatic hydrocarbon (PAH) emission line flux is galaxy template-dependent, cautions should be taken on deriving galaxy FIR contribution from PAH fluxes.
We present an intrinsic AGN SED extending from the optical to the submm, derived with a sample of unobscured, optically luminous (vLv(5100)>10^43.5 erg/s) QSOs at z<0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing th
We use infrared spectroscopy and photometry to empirically define the intrinsic, thermal infrared spectral energy distribution (i.e., 6-100 um SED) of typical active galactic nuclei (i.e., 2-10 keV luminosity, Lx=10^{42}-10^{44} ergs/s AGNs). On aver
We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and highest-redshift (z=1.8) sample of Brightest Cluster Galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS). G
To explore the connection between the global physical properties of galaxies and their far-infrared (FIR) spectral energy distributions (SEDs), we study the variation in the FIR SEDs of a set of hydrodynamically simulated galaxies that are generated
We present a detailed spectral analysis of the brightest Active Galactic Nuclei (AGN) identified in the 7Ms Chandra Deep Field South (CDF-S) survey over a time span of 16 years. Using a model of an intrinsically absorbed power-law plus reflection, wi