ﻻ يوجد ملخص باللغة العربية
Recently the general synthetic iteration scheme (GSIS) is proposed to find the steady-state solution of the Boltzmann equation~cite{SuArXiv2019}, where various numerical simulations have shown that (i) the steady-state solution can be found within dozens of iterations at any Knudsen number $K$, and (ii) the solution is accurate even when the spatial cell size in the bulk region is much larger than the molecular mean free path, i.e. Navier-Stokes solutions are recovered at coarse grids. The first property indicates that the error decay rate between two consecutive iterations decreases to zero with $K$, while the second one implies that the GSIS is asymptotically preserving the Navier-Stokes limit. This paper is dedicated to the rigorous proof of both properties.
Synthetic turbulence models are a useful tool that provide realistic representations of turbulence, necessary to test theoretical results, to serve as background fields in some numerical simulations, and to test analysis tools. Models of 1D and 3D sy
In this paper, a fast synthetic iterative scheme is developed to accelerate convergence for the implicit DOM based on the stationary phonon BTE. The key innovative point of the present scheme is the introduction of the macroscopic synthetic diffusion
Computational fluid dynamics is a direct modeling of physical laws in a discretized space. The basic physical laws include the mass, momentum and energy conservations, physically consistent transport process, and similar domain of dependence and infl
Moment expansions are used as model reduction technique in kinetic gas theory to approximate the Boltzmann equation. Rarefied gas models based on so-called moment equations became increasingly popular recently. However, in a seminal paper by Holway [
The general characteristics based off-lattice Boltzmann scheme (BKG) proposed by Bardow et~al.(2006), and the discrete unified gas kinetic scheme (DUGKS) are two methods that successfully overcome the time step restriction by the collision time, whic