ترغب بنشر مسار تعليمي؟ اضغط هنا

Generative Adversarial Networks for LHCb Fast Simulation

57   0   0.0 ( 0 )
 نشر من قبل Fedor Ratnikov
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Fedor Ratnikov




اسأل ChatGPT حول البحث

LHCb is one of the major experiments operating at the Large Hadron Collider at CERN. The richness of the physics program and the increasing precision of the measurements in LHCb lead to the need of ever larger simulated samples. This need will increase further when the upgraded LHCb detector will start collecting data in the LHC Run 3. Given the computing resources pledged for the production of Monte Carlo simulated events in the next years, the use of fast simulation techniques will be mandatory to cope with the expected dataset size. In LHCb generative models, which are nowadays widely used for computer vision and image processing are being investigated in order to accelerate the generation of showers in the calorimeter and high-level responses of Cherenkov detector. We demonstrate that this approach provides high-fidelity results along with a significant speed increase and discuss possible implication of these results. We also present an implementation of this algorithm into LHCb simulation software and validation tests.



قيم البحث

اقرأ أيضاً

We present the 3DGAN for the simulation of a future high granularity calorimeter output as three-dimensional images. We prove the efficacy of Generative Adversarial Networks (GANs) for generating scientific data while retaining a high level of accura cy for diverse metrics across a large range of input variables. We demonstrate a successful application of the transfer learning concept: we train the network to simulate showers for electrons from a reduced range of primary energies, we then train further for a five times larger range (the model could not train for the larger range directly). The same concept is extended to generate showers for other particles (photons and neutral pions) depositing most of their energies in electromagnetic interactions. In addition, the generation of charged pion showers is also explored, a more accurate effort would require additional data from other detectors not included in the scope of the current work. Our further contribution is a demonstration of using GAN-generated data for a practical application. We train a third-party network using GAN-generated data and prove that the response is similar to a network trained with data from the Monte Carlo simulation. The showers generated by GAN present accuracy within $10%$ of Monte Carlo for a diverse range of physics features, with three orders of magnitude speedup. The speedup for both the training and inference can be further enhanced by distributed training.
High energy physics experiments rely heavily on the detailed detector simulation models in many tasks. Running these detailed models typically requires a notable amount of the computing time available to the experiments. In this work, we demonstrate a new approach to speed up the simulation of the Time Projection Chamber tracker of the MPD experiment at the NICA accelerator complex. Our method is based on a Generative Adversarial Network - a deep learning technique allowing for implicit estimation of the population distribution for a given set of objects. This approach lets us learn and then sample from the distribution of raw detector responses, conditioned on the parameters of the charged particle tracks. To evaluate the quality of the proposed model, we integrate a prototype into the MPD software stack and demonstrate that it produces high-quality events similar to the detailed simulator, with a speed-up of at least an order of magnitude. The prototype is trained on the responses from the inner part of the detector and, once expanded to the full detector, should be ready for use in physics tasks.
120 - Abhishek Abhishek 2019
Matter-antimatter asymmetry is one of the major unsolved problems in physics that can be probed through precision measurements of charge-parity symmetry violation at current and next-generation neutrino oscillation experiments. In this work, we demon strate the capability of variational autoencoders and normalizing flows to approximate the generative distribution of simulated data for water Cherenkov detectors commonly used in these experiments. We study the performance of these methods and their applicability for semi-supervised learning and synthetic data generation.
Recently, sampling methods have been successfully applied to enhance the sample quality of Generative Adversarial Networks (GANs). However, in practice, they typically have poor sample efficiency because of the independent proposal sampling from the generator. In this work, we propose REP-GAN, a novel sampling method that allows general dependent proposals by REParameterizing the Markov chains into the latent space of the generator. Theoretically, we show that our reparameterized proposal admits a closed-form Metropolis-Hastings acceptance ratio. Empirically, extensive experiments on synthetic and real datasets demonstrate that our REP-GAN largely improves the sample efficiency and obtains better sample quality simultaneously.
107 - Rajhans Singh 2019
The advent of generative adversarial networks (GAN) has enabled new capabilities in synthesis, interpolation, and data augmentation heretofore considered very challenging. However, one of the common assumptions in most GAN architectures is the assump tion of simple parametric latent-space distributions. While easy to implement, a simple latent-space distribution can be problematic for uses such as interpolation. This is due to distributional mismatches when samples are interpolated in the latent space. We present a straightforward formalization of this problem; using basic results from probability theory and off-the-shelf-optimization tools, we develop ways to arrive at appropriate non-parametric priors. The obtained prior exhibits unusual qualitative properties in terms of its shape, and quantitative benefits in terms of lower divergence with its mid-point distribution. We demonstrate that our designed prior helps improve image generation along any Euclidean straight line during interpolation, both qualitatively and quantitatively, without any additional training or architectural modifications. The proposed formulation is quite flexible, paving the way to impose newer constraints on the latent-space statistics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا