ﻻ يوجد ملخص باللغة العربية
Recently, elevated LiDAR (ELiD) has been proposed as an alternative to local LiDAR sensors in autonomous vehicles (AV) because of the ability to reduce costs and computational requirements of AVs, reduce the number of overlapping sensors mapping an area, and to allow for a multiplicity of LiDAR sensing applications with the same shared LiDAR map data. Since ELiDs have been removed from the vehicle, their data must be processed externally in the cloud or on the edge, necessitating an optimized backhaul system that allocates data efficiently to compute servers. In this paper, we address this need for an optimized backhaul system by formulating a mixed-integer programming problem that minimizes the average latency of the uplink and downlink hop-by-hop transmission plus computation time for each ELiD while considering different bandwidth allocation schemes. We show that our model is capable of allocating resources for differing topologies, and we perform a sensitivity analysis that demonstrates the robustness of our problem formulation under different circumstances.
While mobile edge computing (MEC) alleviates the computation and power limitations of mobile devices, additional latency is incurred when offloading tasks to remote MEC servers. In this work, the power-delay tradeoff in the context of task offloading
Mobile edge computing (MEC) is considered as an efficient method to relieve the computation burden of mobile devices. In order to reduce the energy consumption and time delay of mobile devices (MDs) in MEC, multiple users multiple input and multiple
Mobile edge computing (MEC) has recently emerged as a promising technology to release the tension between computation-intensive applications and resource-limited mobile terminals (MTs). In this paper, we study the delay-optimal computation offloading
Provided with mobile edge computing (MEC) services, wireless devices (WDs) no longer have to experience long latency in running their desired programs locally, but can pay to offload computation tasks to the edge server. Given its limited storage spa
To overcome devices limitations in performing computation-intense applications, mobile edge computing (MEC) enables users to offload tasks to proximal MEC servers for faster task computation. However, current MEC system design is based on average-bas